Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Testing neutrino mass hierarchy under type-II seesaw scenario in $U(1)_X$ from colliders (2405.11820v3)

Published 20 May 2024 in hep-ph

Abstract: The origin of tiny neutrino mass is a long standing unsolved puzzle of the Standard Model (SM), which allows us to consider scenarios beyond the Standard Model (BSM) in a variety of ways. One of them being a gauge extension of the SM may be realized as in the form of an anomaly free, general $U(1)_X$ extension of the SM, where an $SU(2)_L$ triplet scalar with a $U(1)_X$ charge is introduced to have Dirac Yukawa couplings with the SM lepton doublets. Once the triplet scalar developes a Vacuum Expectation Value (VEV), light neutrinos acquire their tiny Majorana masses. Hence, the decay modes of the triplet scalar has a direct connection to the neutrino oscillation data for different neutrino mass hierarchies. After the breaking of the $U(1)_X$ gauge symmetry, a neutral $U(1)_X$ gauge boson $(Z\prime)$ acquires mass, which interacts differently with the left and right handed SM fermions. Satisfying the recent LHC bounds on the triplet scalar and $Z\prime$ boson productions, we study the pair production of the triplet scalar at LHC, 100 TeV proton proton collider FCC, $e-e+$ and $\mu-\mu+$ colliders followed by its decay into dominant dilepton modes whose flavor structure depend on the neutrino mass hierarchy. Generating the SM backgrounds, we study the possible signal significance of four lepton final states from the triplet scalar pair production. We also compare our results with the purely SM gauge mediated triplet scalar pair production followed by four lepton final states, which could be significant only in $\mu- \mu+$ collider.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. Particle Data Group Collaboration, P. A. Zyla et al., “Review of Particle Physics,” PTEP 2020 no. 8, (2020) 083C01.
  2. J. Schechter and J. W. F. Valle, “Neutrino Decay and Spontaneous Violation of Lepton Number,” Phys. Rev. D 25 (1982) 774.
  3. M. Magg and C. Wetterich, “Neutrino Mass Problem and Gauge Hierarchy,” Phys. Lett. B 94 (1980) 61–64.
  4. T. P. Cheng and L.-F. Li, “Neutrino Masses, Mixings and Oscillations in SU(2) x U(1) Models of Electroweak Interactions,” Phys. Rev. D 22 (1980) 2860.
  5. G. Lazarides, Q. Shafi, and C. Wetterich, “Proton Lifetime and Fermion Masses in an SO(10) Model,” Nucl. Phys. B 181 (1981) 287–300.
  6. R. N. Mohapatra and G. Senjanovic, “Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation,” Phys. Rev. D 23 (1981) 165.
  7. J. C. Pati and A. Salam, “Unified Lepton-Hadron Symmetry and a Gauge Theory of the Basic Interactions,” Phys. Rev. D 8 (1973) 1240–1251.
  8. A. Davidson, “B−L𝐵𝐿B-Litalic_B - italic_L as the fourth color within an SU⁢(2)L×U⁢(1)R×U⁢(1)SUsubscript2𝐿Usubscript1𝑅U1\mathrm{SU}(2)_{L}\times\mathrm{U}(1)_{R}\times\mathrm{U}(1)roman_SU ( 2 ) start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT × roman_U ( 1 ) start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT × roman_U ( 1 ) model,” Phys. Rev. D 20 (1979) 776.
  9. A. Davidson, M. Koca, and K. C. Wali, “U(1) as the Minimal Horizontal Gauge Symmetry,” Phys. Rev. Lett. 43 (1979) 92.
  10. R. E. Marshak and R. N. Mohapatra, “Quark - Lepton Symmetry and B-L as the U(1) Generator of the Electroweak Symmetry Group,” Phys. Lett. B 91 (1980) 222–224.
  11. R. N. Mohapatra and R. E. Marshak, “Local B-L Symmetry of Electroweak Interactions, Majorana Neutrinos and Neutron Oscillations,” Phys. Rev. Lett. 44 (1980) 1316–1319. [Erratum: Phys.Rev.Lett. 44, 1643 (1980)].
  12. N. Okada and O. Seto, “Dirac dark matter, dark radiation, and the type-II seesaw mechanism in alternative U(1)X standard model,” Phys. Rev. D 105 no. 12, (2022) 123512, arXiv:2202.08508 [hep-ph].
  13. E. Di Valentino, O. Mena, S. Pan, L. Visinelli, W. Yang, A. Melchiorri, D. F. Mota, A. G. Riess, and J. Silk, “In the realm of the Hubble tension—a review of solutions,” Class. Quant. Grav. 38 no. 15, (2021) 153001, arXiv:2103.01183 [astro-ph.CO].
  14. Planck Collaboration, N. Aghanim et al., “Planck 2018 results. VI. Cosmological parameters,” Astron. Astrophys. 641 (2020) A6, arXiv:1807.06209 [astro-ph.CO]. [Erratum: Astron.Astrophys. 652, C4 (2021)].
  15. A. de la Macorra, E. Almaraz, and J. Garrido, “Towards a solution to the H0 tension,” Phys. Rev. D 105 no. 2, (2022) 023526, arXiv:2106.12116 [astro-ph.CO].
  16. ATLAS Collaboration, G. Aad et al., “Search for doubly charged Higgs boson production in multi-lepton final states using 139 fb-1 of proton–proton collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector,” Eur. Phys. J. C 83 no. 7, (2023) 605, arXiv:2211.07505 [hep-ex].
  17. ATLAS Collaboration, G. Aad et al., “Search for high-mass dilepton resonances using 139 fb-1 of p⁢p𝑝𝑝ppitalic_p italic_p collision data collected at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG =13 TeV with the ATLAS detector,” Phys. Lett. B 796 (2019) 68–87, arXiv:1903.06248 [hep-ex].
  18. CMS Collaboration, A. M. Sirunyan et al., “Search for resonant and nonresonant new phenomena in high-mass dilepton final states at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV,” JHEP 07 (2021) 208, arXiv:2103.02708 [hep-ex].
  19. S. Kanemura, K. Yagyu, and H. Yokoya, “First constraint on the mass of doubly-charged Higgs bosons in the same-sign diboson decay scenario at the LHC,” Phys. Lett. B 726 (2013) 316–319, arXiv:1305.2383 [hep-ph].
  20. SINDRUM Collaboration, U. Bellgardt et al., “Search for the Decay mu+ —>>> e+ e+ e-,” Nucl. Phys. B 299 (1988) 1–6.
  21. MEG Collaboration, A. M. Baldini et al., “Search for the lepton flavour violating decay μ+→e+⁢γ→superscript𝜇superscripte𝛾\mu^{+}\rightarrow\mathrm{e}^{+}\gammaitalic_μ start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT → roman_e start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT italic_γ with the full dataset of the MEG experiment,” Eur. Phys. J. C 76 no. 8, (2016) 434, arXiv:1605.05081 [hep-ex].
  22. A. Das, S. Mandal, and S. Shil, “Testing electroweak scale seesaw models at e-γ𝛾\gammaitalic_γ and γ𝛾\gammaitalic_γγ𝛾\gammaitalic_γ colliders,” Phys. Rev. D 108 no. 1, (2023) 015022, arXiv:2304.06298 [hep-ph].
  23. G. C. Branco, P. M. Ferreira, L. Lavoura, M. N. Rebelo, M. Sher, and J. P. Silva, “Theory and phenomenology of two-Higgs-doublet models,” Phys. Rept. 516 (2012) 1–102, arXiv:1106.0034 [hep-ph].
  24. J. Pumplin, D. R. Stump, J. Huston, H. L. Lai, P. M. Nadolsky, and W. K. Tung, “New generation of parton distributions with uncertainties from global QCD analysis,” JHEP 07 (2002) 012, arXiv:hep-ph/0201195.
  25. H. Kroha, “Compositeness limits from E+ E- annihilation revisited,” Phys. Rev. D 46 (1992) 58–69.
  26. M. Carena, A. Daleo, B. A. Dobrescu, and T. M. P. Tait, “Z′superscript𝑍′Z^{\prime}italic_Z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT gauge bosons at the Tevatron,” Phys. Rev. D 70 (2004) 093009, arXiv:hep-ph/0408098.
  27. ALEPH, DELPHI, L3, OPAL, LEP Electroweak Collaboration, S. Schael et al., “Electroweak Measurements in Electron-Positron Collisions at W-Boson-Pair Energies at LEP,” Phys. Rept. 532 (2013) 119–244, arXiv:1302.3415 [hep-ex].
  28. LCC Physics Working Group Collaboration, K. Fujii et al., “Tests of the Standard Model at the International Linear Collider,” arXiv:1908.11299 [hep-ex].
  29. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, and T. Stelzer, “MadGraph 5 : Going Beyond,” JHEP 06 (2011) 128, arXiv:1106.0522 [hep-ph].
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com