Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 88 tok/s
GPT OSS 120B 471 tok/s Pro
Kimi K2 220 tok/s Pro
2000 character limit reached

Multi-Objective Learning Model Predictive Control (2405.11698v2)

Published 19 May 2024 in eess.SY and cs.SY

Abstract: Multi-Objective Learning Model Predictive Control is a novel data-driven control scheme which improves a linear system's closed-loop performance with respect to several convex control objectives over iterations of a repeated task. At each task iteration, collected system data is used to construct terminal components of a Model Predictive Controller. The formulation presented in this paper ensures that closed-loop control performance improves between successive iterations with respect to each objective. We provide proofs of recursive feasibility and performance improvement, and show that the converged policy is Pareto optimal. Simulation results demonstrate the applicability of the proposed approach.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run custom paper prompts using GPT-5 on this paper.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube