Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 92 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Kimi K2 175 tok/s Pro
2000 character limit reached

Attention to Quantum Complexity (2405.11632v2)

Published 19 May 2024 in quant-ph

Abstract: The imminent era of error-corrected quantum computing urgently demands robust methods to characterize complex quantum states, even from limited and noisy measurements. We introduce the Quantum Attention Network (QuAN), a versatile classical AI framework leveraging the power of attention mechanisms specifically tailored to address the unique challenges of learning quantum complexity. Inspired by LLMs, QuAN treats measurement snapshots as tokens while respecting their permutation invariance. Combined with a novel parameter-efficient mini-set self-attention block (MSSAB), such data structure enables QuAN to access high-order moments of the bit-string distribution and preferentially attend to less noisy snapshots. We rigorously test QuAN across three distinct quantum simulation settings: driven hard-core Bose-Hubbard model, random quantum circuits, and the toric code under coherent and incoherent noise. QuAN directly learns the growth in entanglement and state complexity from experimentally obtained computational basis measurements. In particular, it learns the growth in complexity of random circuit data upon increasing depth from noisy experimental data. Taken to a regime inaccessible by existing theory, QuAN unveils the complete phase diagram for noisy toric code data as a function of both noise types. This breakthrough highlights the transformative potential of using purposefully designed AI-driven solutions to assist quantum hardware.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. Suppressing quantum errors by scaling a surface code logical qubit, Nature 614, 676 (2023).
  2. A. Anshu and S. Arunachalam, A survey on the complexity of learning quantum states, Nature Reviews Physics 6, 59 (2024), number: 1 Publisher: Nature Publishing Group.
  3. H.-Y. Huang, R. Kueng, and J. Preskill, Predicting many properties of a quantum system from very few measurements, Nature Physics 16, 1050 (2020), number: 10 Publisher: Nature Publishing Group.
  4. S. Aaronson, Shadow tomography of quantum states, in Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing (ACM, Los Angeles CA USA, 2018) pp. 325–338.
  5. A. Zhao, N. C. Rubin, and A. Miyake, Fermionic Partial Tomography via Classical Shadows, Physical Review Letters 127, 110504 (2021), publisher: American Physical Society.
  6. J. Carrasquilla, Machine learning for quantum matter, Advances in Physics: X 5, 1797528 (2020), publisher: Taylor & Francis _eprint: https://doi.org/10.1080/23746149.2020.1797528.
  7. Y. Zhang, P. Ginsparg, and E.-A. Kim, Interpreting machine learning of topological quantum phase transitions, Physical Review Research 2, 023283 (2020).
  8. Y. Zhang, R. G. Melko, and E.-A. Kim, Machine learning Z 2 quantum spin liquids with quasiparticle statistics, Physical Review B 96, 245119 (2017).
  9. Y. Zhang and E.-A. Kim, Quantum Loop Topography for Machine Learning, Physical Review Letters 118, 216401 (2017).
  10. Y.-H. Zhang and M. Di Ventra, Transformer quantum state: A multipurpose model for quantum many-body problems, Physical Review B 107, 075147 (2023), publisher: American Physical Society.
  11. That is, the words form a sequence while the bit-strings form a set.
  12. P. Calabrese and J. Cardy, Entanglement entropy and quantum field theory, Journal of Statistical Mechanics: Theory and Experiment 2004, P06002 (2004).
  13. C. Castelnovo and C. Chamon, Topological order and topological entropy in classical systems, Physical Review B 76, 174416 (2007).
  14. M. B. Hastings, Topological Order at Nonzero Temperature, Physical Review Letters 107, 210501 (2011).
  15. Y. Li, X. Chen, and M. P. A. Fisher, Measurement-driven entanglement transition in hybrid quantum circuits, Physical Review B 100, 134306 (2019).
  16. B. Skinner, J. Ruhman, and A. Nahum, Measurement-Induced Phase Transitions in the Dynamics of Entanglement, Physical Review X 9, 031009 (2019), publisher: American Physical Society.
  17. M. J. Gullans and D. A. Huse, Dynamical Purification Phase Transition Induced by Quantum Measurements, Physical Review X 10, 041020 (2020), publisher: American Physical Society.
  18. I. Goodfellow, Y. Bengio, and A. Courville, Deep learning (MIT press, 2016).
  19. A. M. Dalzell, N. Hunter-Jones, and F. G. S. L. Brandão, Random Quantum Circuits Anticoncentrate in Log Depth, PRX Quantum 3, 010333 (2022), publisher: American Physical Society.
  20. Y.-H. Chen and T. Grover, Unconventional topological mixed-state transition and critical phase induced by self-dual coherent errors, arXiv preprint arXiv:2403.06553  (2024).
  21. R. Sohal and A. Prem, A noisy approach to intrinsically mixed-state topological order, arXiv preprint arXiv:2403.13879  (2024).
  22. M. B. Hastings and X.-G. Wen, Quasiadiabatic continuation of quantum states: The stability of topological ground-state degeneracy and emergent gauge invariance, Physical review b 72, 045141 (2005).
  23. A. Honecker, M. Picco, and P. Pujol, Universality class of the nishimori point in the 2d±plus-or-minus\pm±j random-bond ising model, Physical review letters 87, 047201 (2001).
  24. N. Maskara, Enhancing detection of topological order by local error correction.
  25. C. Castelnovo and C. Chamon, Quantum topological phase transition at the microscopic level, Physical Review B 77, 054433 (2008).
  26. This expectation value can be readily calculated from each subset of Z𝑍Zitalic_Z-basis snapshots as an average.
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube