Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 476 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

Stability and dynamics of magnetic skyrmions in FM/AFM heterostructures (2405.10571v1)

Published 17 May 2024 in cond-mat.mes-hall and cond-mat.mtrl-sci

Abstract: Magnetic skyrmions have garnered attention for their potential roles in spintronic applications, such as information carriers in computation, data storage, and nano-oscillators due to their small size, topological stability, and the requirement of small electric currents to manipulate them. Two key challenges in harnessing skyrmions are the stabilization requirement through a strong out-of-plane field, and the skyrmion Hall effect (SkHE). Here, we present a systematic model study of skyrmions in FM/AFM multi-layer structures by employing both atomistic Monte Carlo and atomistic spin dynamics simulations. We demonstrate that skyrmions stabilized by exchange bias have superior stability than field-stabilized skyrmions due to the formation of a magnetic imprint within the AFM layer. Additionally, stacking two skyrmion hosting FM layers between two antiferromagnetic (AFM) layers suppresses the SkHE and enables the transport of AFM-coupled skyrmions with high velocity in the order of a few Km/s. This proposed multi-layer configuration could serve as a pathway to overcome existing limitations in the development of skyrmion-based devices, and the insights obtained through this study contribute significantly to the broader understanding of topological spin textures in magnetic materials.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. A. Papp, W. Porod, and G. Csaba, Nanoscale neural network using non-linear spin-wave interference, Nature Communications 12, 10.1038/s41467-021-26711-z (2021).
  2. Neuromag: Magnonic matrix-vector-multiplier for neural network applications, https://cordis.europa.eu/project/id/793346/results (2024), accessed: 2024-02-08.
  3. Mannga: Magnonic artificial neural networks and gate arrays, https://mannga-project.eu/project-overview/.
  4. S. Li, X. Wang, and T. Rasing, Magnetic skyrmions: Basic properties and potential applications, Interdisciplinary Materials 2, 260 (2023).
  5. Y. Miyazaki, T. Yokouchi, and Y. Shiomi, Trapping and manipulating skyrmions in two-dimensional films by surface acoustic waves, Scientific Reports 13, 10.1038/s41598-023-29022-z (2023).
  6. K. Hamamoto, M. Ezawa, and N. Nagaosa, Purely electrical detection of a skyrmion in constricted geometry, Applied Physics Letters 108, 10.1063/1.4943949 (2016).
  7. M. G. Morshed, H. Vakili, and A. W. Ghosh, Positional stability of skyrmions in a racetrack memory with notched geometry, Phys. Rev. Appl. 17, 064019 (2022).
  8. H. Belrhazi and M. El Hafidi, Nucleation and manipulation of single skyrmions using spin-polarized currents in antiferromagnetic skyrmion-based racetrack memories, Scientific Reports 12, 10.1038/s41598-022-19587-6 (2022).
  9. T. Shigenaga and A. O. Leonov, Harnessing skyrmion hall effect by thickness gradients in wedge-shaped samples of cubic helimagnets, Nanomaterials 13, 2073 (2023).
  10. S. A. Pathak and R. Hertel, Geometrically constrained skyrmions, Magnetochemistry 7, 26 (2021).
  11. X. Zhang, Y. Zhou, and M. Ezawa, Magnetic bilayer-skyrmions without skyrmion hall effect, Nature Communications 7, 10.1038/ncomms10293 (2016).
  12. R. C. Silva, R. L. Silva, and A. R. Pereira, Magnus-force induced skyrmion-antiskyrmion coupling in inhomogeneous racetrack, Journal of Physics: Condensed Matter 33, 105802 (2020).
  13. Uppasd - uppsala university, department of physics and astronomy, https://www.physics.uu.se/forskning/materialteori/pagaende-forskning/uppasd/, accessed: 2024-02-08.
  14. N. Nagaosa and Y. Tokura, Topological properties and dynamics of magnetic skyrmions, Nature Nanotechnology 8, 899 (2013).
  15. T. Moriya, Anisotropic superexchange interaction and weak ferromagnetism, Phys. Rev. 120, 91 (1960).
  16. J. CHICO, Ph.d. thesis: Magnetization dynamics on the nanoscale : From first principles to atomistic spin dynamics (2016).
  17. J. Slonczewski, Current-driven excitation of magnetic multilayers, Journal of Magnetism and Magnetic Materials 159, L1–L7 (1996).
  18. J. Slonczewski, Currents and torques in metallic magnetic multilayers, Journal of Magnetism and Magnetic Materials 247, 324–338 (2002).
  19. G. C. Loh and C. K. Gan, Exchange and Dzyaloshinskii-Moriya interactions in bulk FeGe: Effects of atomic vacancies, AIP Advances 7, 056412 (2017).
  20. H. A. Kramers, Brownian motion in a field of force and the diffusion model of chemical reactions, Physica 7, 284 (1940).
  21. P. F. Bessarab, V. M. Uzdin, and H. Jónsson, Harmonic transition-state theory of thermal spin transitions, Physical Review B 85, 184409 (2012).
  22. O. V. Billoni, S. A. Cannas, and F. A. Tamarit, The exchange bias phenomenon in uncompensated interfaces: theory and monte carlo simulations, Journal of Physics: Condensed Matter 23, 386004 (2011).
  23. R. L. Stamps, Mechanisms for exchange bias, Journal of Physics D: Applied Physics 33, R247 (2000).
  24. W. H. Meiklejohn, Exchange anisotropy-a review, Journal of Applied Physics 33, 1328 (1962).
  25. O. Iglesias, X. Batlle, and A. Labarta, Microscopic origin of exchange bias in core/shell nanoparticles, Phys. Rev. B 72, 212401 (2005).
  26. J. Nogues and I. K. Schuller, Exchange bias, Journal of Magnetism and Magnetic Materials 192, 203 (1999).
  27. X. S. Wang, H. Y. Yuan, and X. R. Wang, A theory on skyrmion size, Communications Physics 1, 10.1038/s42005-018-0029-0 (2018).
  28. P. F. Bessarab, Comment on “path to collapse for an isolated néel skyrmion”, Phys. Rev. B 95, 136401 (2017).
  29. J. Iwasaki, M. Mochizuki, and N. Nagaosa, Universal current-velocity relation of skyrmion motion in chiral magnets, Nature Communications 4, 10.1038/ncomms2442 (2013).
  30. E. A. Tremsina and G. S. D. Beach, Atomistic simulations of distortion-limited high-speed dynamics of antiferromagnetic skyrmions, Phys. Rev. B 106, L220402 (2022).
  31. K. D. Usadel and R. L. Stamps, Exchange bias: Dependence on the properties of the ferromagnetic interface layer, Phys. Rev. B 82, 094432 (2010).
  32. J. Moritz, P. Bacher, and B. Dieny, Numerical study of the influence of interfacial roughness on the exchange bias properties of ferromagnetic/antiferromagnetic bilayers, Phys. Rev. B 94, 104425 (2016).
  33. R. Cheenikundil, ASD2VTK, https://github.com/karpathyan/ASD2VTK (2024), accessed on: 09/April/2024.
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com