Stability and dynamics of magnetic skyrmions in FM/AFM heterostructures (2405.10571v1)
Abstract: Magnetic skyrmions have garnered attention for their potential roles in spintronic applications, such as information carriers in computation, data storage, and nano-oscillators due to their small size, topological stability, and the requirement of small electric currents to manipulate them. Two key challenges in harnessing skyrmions are the stabilization requirement through a strong out-of-plane field, and the skyrmion Hall effect (SkHE). Here, we present a systematic model study of skyrmions in FM/AFM multi-layer structures by employing both atomistic Monte Carlo and atomistic spin dynamics simulations. We demonstrate that skyrmions stabilized by exchange bias have superior stability than field-stabilized skyrmions due to the formation of a magnetic imprint within the AFM layer. Additionally, stacking two skyrmion hosting FM layers between two antiferromagnetic (AFM) layers suppresses the SkHE and enables the transport of AFM-coupled skyrmions with high velocity in the order of a few Km/s. This proposed multi-layer configuration could serve as a pathway to overcome existing limitations in the development of skyrmion-based devices, and the insights obtained through this study contribute significantly to the broader understanding of topological spin textures in magnetic materials.
- A. Papp, W. Porod, and G. Csaba, Nanoscale neural network using non-linear spin-wave interference, Nature Communications 12, 10.1038/s41467-021-26711-z (2021).
- Neuromag: Magnonic matrix-vector-multiplier for neural network applications, https://cordis.europa.eu/project/id/793346/results (2024), accessed: 2024-02-08.
- Mannga: Magnonic artificial neural networks and gate arrays, https://mannga-project.eu/project-overview/.
- S. Li, X. Wang, and T. Rasing, Magnetic skyrmions: Basic properties and potential applications, Interdisciplinary Materials 2, 260 (2023).
- Y. Miyazaki, T. Yokouchi, and Y. Shiomi, Trapping and manipulating skyrmions in two-dimensional films by surface acoustic waves, Scientific Reports 13, 10.1038/s41598-023-29022-z (2023).
- K. Hamamoto, M. Ezawa, and N. Nagaosa, Purely electrical detection of a skyrmion in constricted geometry, Applied Physics Letters 108, 10.1063/1.4943949 (2016).
- M. G. Morshed, H. Vakili, and A. W. Ghosh, Positional stability of skyrmions in a racetrack memory with notched geometry, Phys. Rev. Appl. 17, 064019 (2022).
- H. Belrhazi and M. El Hafidi, Nucleation and manipulation of single skyrmions using spin-polarized currents in antiferromagnetic skyrmion-based racetrack memories, Scientific Reports 12, 10.1038/s41598-022-19587-6 (2022).
- T. Shigenaga and A. O. Leonov, Harnessing skyrmion hall effect by thickness gradients in wedge-shaped samples of cubic helimagnets, Nanomaterials 13, 2073 (2023).
- S. A. Pathak and R. Hertel, Geometrically constrained skyrmions, Magnetochemistry 7, 26 (2021).
- X. Zhang, Y. Zhou, and M. Ezawa, Magnetic bilayer-skyrmions without skyrmion hall effect, Nature Communications 7, 10.1038/ncomms10293 (2016).
- R. C. Silva, R. L. Silva, and A. R. Pereira, Magnus-force induced skyrmion-antiskyrmion coupling in inhomogeneous racetrack, Journal of Physics: Condensed Matter 33, 105802 (2020).
- Uppasd - uppsala university, department of physics and astronomy, https://www.physics.uu.se/forskning/materialteori/pagaende-forskning/uppasd/, accessed: 2024-02-08.
- N. Nagaosa and Y. Tokura, Topological properties and dynamics of magnetic skyrmions, Nature Nanotechnology 8, 899 (2013).
- T. Moriya, Anisotropic superexchange interaction and weak ferromagnetism, Phys. Rev. 120, 91 (1960).
- J. CHICO, Ph.d. thesis: Magnetization dynamics on the nanoscale : From first principles to atomistic spin dynamics (2016).
- J. Slonczewski, Current-driven excitation of magnetic multilayers, Journal of Magnetism and Magnetic Materials 159, L1–L7 (1996).
- J. Slonczewski, Currents and torques in metallic magnetic multilayers, Journal of Magnetism and Magnetic Materials 247, 324–338 (2002).
- G. C. Loh and C. K. Gan, Exchange and Dzyaloshinskii-Moriya interactions in bulk FeGe: Effects of atomic vacancies, AIP Advances 7, 056412 (2017).
- H. A. Kramers, Brownian motion in a field of force and the diffusion model of chemical reactions, Physica 7, 284 (1940).
- P. F. Bessarab, V. M. Uzdin, and H. Jónsson, Harmonic transition-state theory of thermal spin transitions, Physical Review B 85, 184409 (2012).
- O. V. Billoni, S. A. Cannas, and F. A. Tamarit, The exchange bias phenomenon in uncompensated interfaces: theory and monte carlo simulations, Journal of Physics: Condensed Matter 23, 386004 (2011).
- R. L. Stamps, Mechanisms for exchange bias, Journal of Physics D: Applied Physics 33, R247 (2000).
- W. H. Meiklejohn, Exchange anisotropy-a review, Journal of Applied Physics 33, 1328 (1962).
- O. Iglesias, X. Batlle, and A. Labarta, Microscopic origin of exchange bias in core/shell nanoparticles, Phys. Rev. B 72, 212401 (2005).
- J. Nogues and I. K. Schuller, Exchange bias, Journal of Magnetism and Magnetic Materials 192, 203 (1999).
- X. S. Wang, H. Y. Yuan, and X. R. Wang, A theory on skyrmion size, Communications Physics 1, 10.1038/s42005-018-0029-0 (2018).
- P. F. Bessarab, Comment on “path to collapse for an isolated néel skyrmion”, Phys. Rev. B 95, 136401 (2017).
- J. Iwasaki, M. Mochizuki, and N. Nagaosa, Universal current-velocity relation of skyrmion motion in chiral magnets, Nature Communications 4, 10.1038/ncomms2442 (2013).
- E. A. Tremsina and G. S. D. Beach, Atomistic simulations of distortion-limited high-speed dynamics of antiferromagnetic skyrmions, Phys. Rev. B 106, L220402 (2022).
- K. D. Usadel and R. L. Stamps, Exchange bias: Dependence on the properties of the ferromagnetic interface layer, Phys. Rev. B 82, 094432 (2010).
- J. Moritz, P. Bacher, and B. Dieny, Numerical study of the influence of interfacial roughness on the exchange bias properties of ferromagnetic/antiferromagnetic bilayers, Phys. Rev. B 94, 104425 (2016).
- R. Cheenikundil, ASD2VTK, https://github.com/karpathyan/ASD2VTK (2024), accessed on: 09/April/2024.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.