Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Quadratic quasi-normal mode dependence on linear mode parity (2405.10270v3)

Published 16 May 2024 in gr-qc

Abstract: Quasinormal modes (QNMs) uniquely describe the dominant piece of the gravitational-wave ringdown of postmerger black holes. While the linear QNM regime has been extensively studied, recent work has highlighted the importance of second-perturbative-order, quadratic QNMs (QQNMs) arising from the nonlinear coupling of linear QNMs. Previous attempts to quantify the magnitude of these QQNMs have shown discrepant results. Using a new hyperboloidal framework, we resolve the discrepancy by showing that the QQNM/QNM ratio is a function not only of the black hole parameters but also of the ratio between even- and odd-parity linear QNMs: the ratio QQNM/QNM depends on what created the ringing black hole, but only through this ratio of even- to odd-parity linear perturbations.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. K. D. Kokkotas and B. G. Schmidt, Quasinormal modes of stars and black holes, Living Rev. Rel. 2, 2 (1999), arXiv:gr-qc/9909058 .
  2. E. Berti, V. Cardoso, and A. O. Starinets, Quasinormal modes of black holes and black branes, Class. Quant. Grav. 26, 163001 (2009), arXiv:0905.2975 [gr-qc] .
  3. R. A. Konoplya and A. Zhidenko, Quasinormal modes of black holes: From astrophysics to string theory, Rev. Mod. Phys. 83, 793 (2011), arXiv:1102.4014 [gr-qc] .
  4. E. Barausse, V. Cardoso, and P. Pani, Can environmental effects spoil precision gravitational-wave astrophysics?, Phys. Rev. D 89, 104059 (2014), arXiv:1404.7149 [gr-qc] .
  5. E. Berti, V. Cardoso, and C. M. Will, On gravitational-wave spectroscopy of massive black holes with the space interferometer LISA, Phys. Rev. D 73, 064030 (2006), arXiv:gr-qc/0512160 .
  6. B. P. Abbott et al. (LIGO Scientific, Virgo), Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116, 061102 (2016), arXiv:1602.03837 [gr-qc] .
  7. R. Abbott et al. (LIGO Scientific, Virgo), Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog, Phys. Rev. D 103, 122002 (2021a), arXiv:2010.14529 [gr-qc] .
  8. C. D. Capano and A. H. Nitz, Binary black hole spectroscopy: a no-hair test of GW190814 and GW190412, Phys. Rev. D 102, 124070 (2020), arXiv:2008.02248 [gr-qc] .
  9. E. Finch and C. J. Moore, Searching for a ringdown overtone in GW150914, Phys. Rev. D 106, 043005 (2022), arXiv:2205.07809 [gr-qc] .
  10. P. J. Nee, S. H. Völkel, and H. P. Pfeiffer, Role of black hole quasinormal mode overtones for ringdown analysis, Phys. Rev. D 108, 044032 (2023), arXiv:2302.06634 [gr-qc] .
  11. H. Siegel, M. Isi, and W. M. Farr, Ringdown of GW190521: Hints of multiple quasinormal modes with a precessional interpretation, Phys. Rev. D 108, 064008 (2023), arXiv:2307.11975 [gr-qc] .
  12. V. Gennari, G. Carullo, and W. Del Pozzo, Searching for ringdown higher modes with a numerical relativity-informed post-merger model, Eur. Phys. J. C 84, 233 (2024), arXiv:2312.12515 [gr-qc] .
  13. M. Maggiore et al., Science Case for the Einstein Telescope, JCAP 03, 050, arXiv:1912.02622 [astro-ph.CO] .
  14. M. H.-Y. Cheung et al., Nonlinear Effects in Black Hole Ringdown, Phys. Rev. Lett. 130, 081401 (2023a), arXiv:2208.07374 [gr-qc] .
  15. K. Mitman et al., Nonlinearities in Black Hole Ringdowns, Phys. Rev. Lett. 130, 081402 (2023), arXiv:2208.07380 [gr-qc] .
  16. S. Ma and H. Yang, The excitation of quadratic quasinormal modes for kerr black holes (2024), arXiv:2401.15516 [gr-qc] .
  17. R. Panosso Macedo and M. Ansorg, Axisymmetric fully spectral code for hyperbolic equations, J. Comput. Phys. 276, 357 (2014), arXiv:1402.7343 [physics.comp-ph] .
  18. M. Ansorg and R. Panosso Macedo, Spectral decomposition of black-hole perturbations on hyperboloidal slices, Phys. Rev. D 93, 124016 (2016), arXiv:1604.02261 [gr-qc] .
  19. R. Panosso Macedo, J. L. Jaramillo, and M. Ansorg, Hyperboloidal slicing approach to quasi-normal mode expansions: the Reissner-Nordström case, Phys. Rev. D 98, 124005 (2018), arXiv:1809.02837 [gr-qc] .
  20. R. Panosso Macedo, Hyperboloidal framework for the Kerr spacetime, Class. Quant. Grav. 37, 065019 (2020), arXiv:1910.13452 [gr-qc] .
  21. J. L. Jaramillo, R. Panosso Macedo, and L. Al Sheikh, Pseudospectrum and Black Hole Quasinormal Mode Instability, Phys. Rev. X 11, 031003 (2021), arXiv:2004.06434 [gr-qc] .
  22. R. Panosso Macedo, Hyperboloidal approach for static spherically symmetric spacetimes: a didactical introduction and applications in black-hole physics, Phil. Trans. Roy. Soc. Lond. A 382, 20230046 (2024), arXiv:2307.15735 [gr-qc] .
  23. A. Spiers, A. Pound, and J. Moxon, Second-order Teukolsky formalism in Kerr spacetime: Formulation and nonlinear source, Phys. Rev. D 108, 064002 (2023b), arXiv:2305.19332 [gr-qc] .
  24. A. Pound and B. Wardell, Black hole perturbation theory and gravitational self-force 10.1007/978-981-15-4702-7_38-1 (2021), arXiv:2101.04592 [gr-qc] .
  25. S. A. Teukolsky, Rotating black holes: Separable wave equations for gravitational and electromagnetic perturbations, Physical Review Letters 29, 1114 (1972).
  26. E. W. Leaver, Spectral decomposition of the perturbation response of the Schwarzschild geometry, Phys. Rev. D 34, 384 (1986).
  27. A. Zenginoglu, A Geometric framework for black hole perturbations, Phys. Rev. D 83, 127502 (2011), arXiv:1102.2451 [gr-qc] .
  28. H.-P. Nollert, About the significance of quasinormal modes of black holes, Phys. Rev. D 53, 4397 (1996), arXiv:gr-qc/9602032 .
  29. A. Dhani, Importance of mirror modes in binary black hole ringdown waveform, Physical Review D 103, 104048 (2021).
  30. T. Mädler and J. Winicour, Bondi-Sachs Formalism, Scholarpedia 11, 33528 (2016), arXiv:1609.01731 [gr-qc] .
  31. K. Martel and E. Poisson, Gravitational perturbations of the Schwarzschild spacetime: A Practical covariant and gauge-invariant formalism, Phys. Rev. D 71, 104003 (2005), arXiv:gr-qc/0502028 .
  32. M. Campanelli and C. O. Lousto, Second order gauge invariant gravitational perturbations of a kerr black hole, Physical Review D 59, 124022 (1999).
  33. S. R. Green, S. Hollands, and P. Zimmerman, Teukolsky formalism for nonlinear Kerr perturbations, Classical and Quantum Gravity 37, 075001 (2020).
  34. A. Spiers, NP and GHP Formalisms for second-order Teukolsky equations, https://github.com/DrAndrewSpiers/NP-and-GHP-Formalisms-for-2nd-order-Teukolsky (2023).
Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com