Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 102 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s
GPT OSS 120B 475 tok/s Pro
Kimi K2 203 tok/s Pro
2000 character limit reached

BSQ Conserved Charges in Relativistic Viscous Hydrodynamics solved with Smoothed Particle Hydrodynamics (2405.09648v1)

Published 15 May 2024 in nucl-th and hep-ph

Abstract: Conservation laws play a crucial role in the modeling of heavy-ion collisions, including the those for charges such as baryon number (B), strangeness (S), and electric charge (Q). In this study, we present a new 2+1 relativistic viscous hydrodynamic code called CCAKE which uses the Smoothed Particle Hydrodynamics (SPH) formalism to locally conserve BSQ charges, together with an extended description of the multi-dimensional equation of state (EoS) obtained from lattice Quantum Chromodynamics. Initial conditions for CCAKE are supplied by the ICCING model, which samples gluon splittings into quark anti-quark pairs to generate the initial BSQ charge distributions. We study correlations between the BSQ charges and find that local BSQ fluctuations remain finite during the evolution, with corresponding chemical potentials of ($\sim100$--$200 \,\rm MeV$) at freeze-out. We find that our framework produces reasonable multiplicities of identified particles and that ICCING has no significant effect on the collective flow of all charged particles nor of identified particles when only one particle of interest is considered. However, we show specifically for Pb+Pb collisions at the LHC $\sqrt{s_{NN}}=5.02$ TeV that ICCING does have an effect on collective flow of identified particles if two particles of interest are considered.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (56)
  1. U. Heinz and R. Snellings, Ann. Rev. Nucl. Part. Sci. 63, 123 (2013), arXiv:1301.2826 [nucl-th] .
  2. M. Luzum and H. Petersen, J. Phys. G 41, 063102 (2014), arXiv:1312.5503 [nucl-th] .
  3. G. D. Moore and D. Teaney, Phys. Rev. C 71, 064904 (2005), arXiv:hep-ph/0412346 .
  4. J. Adam et al. (ALICE), Nature Phys. 13, 535 (2017), arXiv:1606.07424 [nucl-ex] .
  5. B. Schenke and R. Venugopalan, Phys. Rev. Lett. 113, 102301 (2014), arXiv:1405.3605 [nucl-th] .
  6. H. Mäntysaari and B. Schenke, Phys. Rev. Lett. 117, 052301 (2016), arXiv:1603.04349 [hep-ph] .
  7. C. Shen and B. Schenke, Phys. Rev. C 97, 024907 (2018), arXiv:1710.00881 [nucl-th] .
  8. F. D. Aaron et al. (H1, ZEUS), JHEP 01, 109 (2010), arXiv:0911.0884 [hep-ex] .
  9. D. Everett et al. (JETSCAPE), Phys. Rev. Lett. 126, 242301 (2021a), arXiv:2010.03928 [hep-ph] .
  10. S. A. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998), arXiv:nucl-th/9803035 .
  11. J. Weil et al. (SMASH), Phys. Rev. C 94, 054905 (2016), arXiv:1606.06642 [nucl-th] .
  12. D. Oliinychenko and V. Koch, Phys. Rev. Lett. 123, 182302 (2019), arXiv:1902.09775 [hep-ph] .
  13. L. Du and U. Heinz, Comput. Phys. Commun. 251, 107090 (2020), arXiv:1906.11181 [nucl-th] .
  14. M. D. Sievert and J. Noronha-Hostler, Phys. Rev. C 100, 024904 (2019), arXiv:1901.01319 [nucl-th] .
  15. https://the-nuclear-confectionery.github.io/ccake-site/.
  16. J. J. Monaghan, Ann. Rev. Astron. Astrophys. 30, 543 (1992).
  17. J. J. Monaghan and J. C. Lattanzio, Astronomy and Astrophysics 149, 135 (1985).
  18. J. P. Blaizot, Acta Phys. Polon. B 18, 659 (1987).
  19. J. P. Blaizot and J.-Y. Ollitrault, Phys. Lett. B 191, 21 (1987).
  20. S. Rosswog, New Astron. Rev. 53, 78 (2009), arXiv:0903.5075 [astro-ph.IM] .
  21. S. Rosswog and P. Diener, Class. Quant. Grav. 38, 115002 (2021), arXiv:2012.13954 [gr-qc] .
  22. D. Everett et al. (JETSCAPE), Phys. Rev. C 103, 054904 (2021b), arXiv:2011.01430 [hep-ph] .
  23. A. Bazavov et al., Phys. Rev. D 101, 074502 (2020), arXiv:2001.08530 [hep-lat] .
  24. A. Bazavov et al. (HotQCD), Phys. Lett. B 795, 15 (2019), arXiv:1812.08235 [hep-lat] .
  25. G. D. Moore and O. Saremi, JHEP 09, 015 (2008), arXiv:0805.4201 [hep-ph] .
  26. I. Danhoni and G. D. Moore, JHEP 02, 124 (2023), arXiv:2212.02325 [hep-ph] .
  27. P. Alba et al., Phys. Rev. D 96, 034517 (2017), arXiv:1702.01113 [hep-lat] .
  28. M. Troyer and U.-J. Wiese, Phys. Rev. Lett. 94, 170201 (2005), arXiv:cond-mat/0408370 .
  29. C. Ratti, Rept. Prog. Phys. 81, 084301 (2018), arXiv:1804.07810 [hep-lat] .
  30. J. D. Bjorken, Phys. Rev. D 27, 140 (1983).
  31. S. S. Gubser, Phys. Rev. D 82, 085027 (2010), arXiv:1006.0006 [hep-th] .
  32. S. S. Gubser and A. Yarom, Nucl. Phys. B 846, 469 (2011), arXiv:1012.1314 [hep-th] .
  33. G. S. Denicol and J. Noronha, Phys. Rev. D 99, 116004 (2019), arXiv:1804.04771 [nucl-th] .
  34. F. Cooper and G. Frye, Phys. Rev. D 10, 186 (1974).
  35. C. Schmid (COL-NOTE = RBC, HotQCD), in 3rd International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions (2008) arXiv:0810.0374 [hep-lat] .
  36. X. Du and S. Schlichting, Phys. Rev. Lett. 127, 122301 (2021), arXiv:2012.09068 [hep-ph] .
  37. S. Acharya et al. (ALICE), Phys. Lett. B 834, 137393 (2022), arXiv:2111.06106 [nucl-ex] .
  38. G. Nijs and W. van der Schee, Phys. Rev. Lett. 129, 232301 (2022), arXiv:2206.13522 [nucl-th] .
  39. J. Adam et al. (ALICE), Phys. Rev. Lett. 116, 222302 (2016), arXiv:1512.06104 [nucl-ex] .
  40. S. Acharya et al. (ALICE), JHEP 11, 013 (2018a), arXiv:1802.09145 [nucl-ex] .
  41. S. Acharya et al. (ALICE), Phys. Rev. C 101, 044907 (2020), arXiv:1910.07678 [nucl-ex] .
  42. O. Vázquez Rueda (ALICE), PoS EPS-HEP2019, 306 (2020), arXiv:2001.03156 [hep-ex] .
  43. S. Acharya et al. (ALICE), JHEP 07, 103 (2018b), arXiv:1804.02944 [nucl-ex] .
  44. M. Floris, Nucl. Phys. A 931, 103 (2014), arXiv:1408.6403 [nucl-ex] .
  45. A. Bazavov et al., Phys. Rev. Lett. 113, 072001 (2014), arXiv:1404.6511 [hep-lat] .
  46. J. Noronha-Hostler and C. Greiner,   (2014a), arXiv:1405.7298 [nucl-th] .
  47. J. Noronha-Hostler and C. Greiner, Nucl. Phys. A 931, 1108 (2014b), arXiv:1408.0761 [nucl-th] .
  48. J. Steinheimer and M. Bleicher, EPJ Web Conf. 97, 00026 (2015).
  49. M. Bluhm and M. Nahrgang, Eur. Phys. J. C 79, 155 (2019), arXiv:1806.04499 [nucl-th] .
  50. A. Bilandzic, Anisotropic flow measurements in ALICE at the large hadron collider, Ph.D. thesis, Utrecht U. (2012).
  51. M. Luzum and J.-Y. Ollitrault, Phys. Rev. C 87, 044907 (2013), arXiv:1209.2323 [nucl-ex] .
  52. S. Acharya et al. (ALICE), Phys. Rev. C 107, L051901 (2023), arXiv:2206.04574 [nucl-ex] .
  53. S. Floerchinger and M. Martinez, Phys. Rev. C 92, 064906 (2015), arXiv:1507.05569 [nucl-th] .
  54. P. Parotto, Characterization of the Transition Region in the QCD Phase Diagram, Ph.D. thesis, Houston U. (2019).
  55. V. Springel, Ann. Rev. Astron. Astrophys. 48, 391 (2010), arXiv:1109.2219 [astro-ph.CO] .
  56. D. J. Price, J. Comput. Phys. 231, 759 (2012), arXiv:1012.1885 [astro-ph.IM] .
Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.