Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Roots in the semiring of finite deterministic dynamical systems (2405.09236v2)

Published 15 May 2024 in cs.DM and math.DS

Abstract: Finite discrete-time dynamical systems (FDDS) model phenomena that evolve deterministically in discrete time. It is possible to define sum and product operations on these systems (disjoint union and direct product, respectively) giving a commutative semiring. This algebraic structure led to several works employing polynomial equations to model hypotheses on phenomena modelled using FDDS. To solve these equations, algorithms for performing the division and computing $k$-th roots are needed. In this paper, we propose two polynomial algorithms for these tasks, under the condition that the result is a connected FDDS. This ultimately leads to an efficient solution to equations of the type $AXk=B$ for connected $X$. These results are some of the important final steps for solving more general polynomial equations on FDDS.

Summary

We haven't generated a summary for this paper yet.