Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 34 tok/s Pro
GPT-4o 72 tok/s
GPT OSS 120B 441 tok/s Pro
Kimi K2 200 tok/s Pro
2000 character limit reached

Time-adaptive phase estimation (2405.08930v3)

Published 14 May 2024 in quant-ph

Abstract: Phase estimation is known to be a robust method for single-qubit gate calibration in quantum computers, while Bayesian estimation is widely used in devising optimal methods for learning in quantum systems. We present Bayesian phase estimation methods that adaptively choose a control phase and the time of coherent evolution based on prior phase knowledge. In the presence of noise, we find near-optimal performance with respect to known theoretical bounds, and demonstrate some robustness of the estimates to noise that is not accounted for in the model of the estimator, making the methods suitable for calibrating operations in quantum computers. We determine the utility of control parameter values using functions of the prior probability of the phase that quantify expected knowledge gain either in terms of expected narrowing of the posterior or expected information gain. In particular, we find that by maximising the rate of expected gain we obtain phase estimates having standard deviation a factor of 1.43 larger than the Heisenberg limit using a classical sequential strategy. The methods provide optimal solutions accounting for available prior knowledge and experimental imperfections with minimal effort from the user. The effect of many types of noise can be specified in the model of the measurement probabilities, and the rate of knowledge gain can easily be adjusted to account for times included in the measurement sequence other than the coherent evolution leading to the unknown phase, such as times required for state preparation or readout.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (59)
  1. T. Kaftal and R. Demkowicz-Dobrzański, Usefulness of an enhanced kitaev phase-estimation algorithm in quantum metrology and computation, Phys. Rev. A 90, 062313 (2014).
  2. V. Giovannetti, S. Lloyd, and L. Maccone, Quantum-enhanced measurements: Beating the standard quantum limit, Science 306, 1330 (2004), https://www.science.org/doi/pdf/10.1126/science.1104149 .
  3. A. Luis, Phase-shift amplification for precision measurements without nonclassical states, Phys. Rev. A 65, 025802 (2002).
  4. T. Rudolph and L. Grover, Quantum communication complexity of establishing a shared reference frame, Phys. Rev. Lett. 91, 217905 (2003).
  5. M. de Burgh and S. D. Bartlett, Quantum methods for clock synchronization: Beating the standard quantum limit without entanglement, Phys. Rev. A 72, 042301 (2005).
  6. V. Giovannetti, S. Lloyd, and L. Maccone, Quantum metrology, Phys. Rev. Lett. 96, 010401 (2006).
  7. C. J. O’Loan, Iterative phase estimation, Journal of Physics A: Mathematical and Theoretical 43, 015301 (2009).
  8. S. Boixo and C. Heunen, Entangled and sequential quantum protocols with dephasing, Phys. Rev. Lett. 108, 120402 (2012).
  9. L. Maccone, Intuitive reason for the usefulness of entanglement in quantum metrology, Phys. Rev. A 88, 042109 (2013).
  10. This is not necessarily true when noise is considered [83].
  11. A. Y. Kitaev, Quantum measurements and the abelian stabilizer problem, Electron. Colloquium Comput. Complex. TR96 (1995).
  12. R. B. Griffiths and C.-S. Niu, Semiclassical fourier transform for quantum computation, Phys. Rev. Lett. 76, 3228 (1996).
  13. S. Kimmel, G. H. Low, and T. J. Yoder, Robust calibration of a universal single-qubit gate set via robust phase estimation, Physical Review A 92, 062315 (2015).
  14. F. Martínez-García, D. Vodola, and M. Müller, Adaptive bayesian phase estimation for quantum error correcting codes, New Journal of Physics 21, 123027 (2019).
  15. H. M. Wiseman and R. B. Killip, Adaptive single-shot phase measurements: A semiclassical approach, Phys. Rev. A 56, 944 (1997).
  16. H. M. Wiseman and R. B. Killip, Adaptive single-shot phase measurements: The full quantum theory, Phys. Rev. A 57, 2169 (1998).
  17. D. W. Berry and H. M. Wiseman, Optimal states and almost optimal adaptive measurements for quantum interferometry, Phys. Rev. Lett. 85, 5098 (2000).
  18. D. W. Berry, H. M. Wiseman, and J. K. Breslin, Optimal input states and feedback for interferometric phase estimation, Phys. Rev. A 63, 053804 (2001).
  19. M. W. Mitchell, Metrology with entangled states, in Quantum Communications and Quantum Imaging III, Vol. 5893, edited by R. E. Meyers and Y. Shih, International Society for Optics and Photonics (SPIE, 2005) p. 589310.
  20. S. Boixo and R. D. Somma, Parameter estimation with mixed-state quantum computation, Phys. Rev. A 77, 052320 (2008).
  21. S. Olivares and M. G. A. Paris, Bayesian estimation in homodyne interferometry, Journal of Physics B: Atomic, Molecular and Optical Physics 42, 055506 (2009).
  22. J. G. Smith, C. H. W. Barnes, and D. R. M. Arvidsson-Shukur, An adaptive Bayesian quantum algorithm for phase estimation, arXiv:2303.01517 [quant-ph] (2023).
  23. V. Giovannetti, S. Lloyd, and L. Maccone, Advances in quantum metrology, Nature Photonics 5, 222 (2011).
  24. A. Shaji and C. M. Caves, Qubit metrology and decoherence, Phys. Rev. A 76, 032111 (2007).
  25. B. M. Escher, R. L. de Matos Filho, and L. Davidovich, General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology, Nature Physics 7, 406 (2011).
  26. L. Maccone and V. Giovannetti, Beauty and the noisy beast, Nature Physics 7, 376 (2011).
  27. R. Demkowicz-Dobrzański, J. Kołodyński, and M. GuŢă, The elusive heisenberg limit in quantum-enhanced metrology, Nature Communications 3, 1063 (2012).
  28. J. Kołodyński and R. Demkowicz-Dobrzański, Efficient tools for quantum metrology with uncorrelated noise, New Journal of Physics 15, 073043 (2013).
  29. S. Alipour, M. Mehboudi, and A. T. Rezakhani, Quantum metrology in open systems: Dissipative cramér-rao bound, Phys. Rev. Lett. 112, 120405 (2014).
  30. K. Macieszczak, M. Fraas, and R. Demkowicz-Dobrzański, Bayesian quantum frequency estimation in presence of collective dephasing, New Journal of Physics 16, 113002 (2014).
  31. R. Demkowicz-Dobrzański, J. Czajkowski, and P. Sekatski, Adaptive quantum metrology under general markovian noise, Phys. Rev. X 7, 041009 (2017).
  32. L. Maccone and G. De Cillis, Robust strategies for lossy quantum interferometry, Phys. Rev. A 79, 023812 (2009).
  33. J. Kołodyński and R. Demkowicz-Dobrzański, Phase estimation without a priori phase knowledge in the presence of loss, Phys. Rev. A 82, 053804 (2010).
  34. P. Cappellaro, Spin-bath narrowing with adaptive parameter estimation, Phys. Rev. A 85, 030301 (2012).
  35. A. J. F. Hayes and D. W. Berry, Swarm optimization for adaptive phase measurements with low visibility, Phys. Rev. A 89, 013838 (2014).
  36. C. Bonato and D. W. Berry, Adaptive tracking of a time-varying field with a quantum sensor, Phys. Rev. A 95, 052348 (2017).
  37. R. D. McMichael, S. Dushenko, and S. M. Blakley, Sequential bayesian experiment design for adaptive ramsey sequence measurements, Journal of Applied Physics 130, 144401 (2021), https://doi.org/10.1063/5.0055630 .
  38. Readout can also be improved by adaptive methods [84, 85].
  39. R. S. Said, D. W. Berry, and J. Twamley, Nanoscale magnetometry using a single-spin system in diamond, Phys. Rev. B 83, 125410 (2011).
  40. N. M. Nusran, M. U. Momeen, and M. V. G. Dutt, High-dynamic-range magnetometry with a single electronic spin in diamond, Nature Nanotechnology 7, 109 (2012).
  41. F. Belliardo and V. Giovannetti, Achieving heisenberg scaling with maximally entangled states: An analytic upper bound for the attainable root-mean-square error, Phys. Rev. A 102, 042613 (2020).
  42. This is an example where entanglement can be used to convert temporal resources into spacial resources [11].
  43. N. Wiebe and C. Granade, Efficient bayesian phase estimation, Phys. Rev. Lett. 117, 010503 (2016).
  44. R. Demkowicz-Dobrzański, Optimal phase estimation with arbitrary a priori knowledge, Phys. Rev. A 83, 061802 (2011).
  45. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2010).
  46. While λk<1subscript𝜆𝑘1\lambda_{k}<1italic_λ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT < 1 describes a reduced probability for the outcome ξ=−1𝜉1\xi=-1italic_ξ = - 1, the reverse situation can always be described by relabelling the outcomes.
  47. A. Holevo, Probabilistic and Statistical Aspects of Quantum Theory, 2nd ed., Publications of the Scuola Normale Superiore (Edizioni della Normale Pisa, 2011).
  48. The differential entropy is the entropy of a continuous random variable, but it lacks some important properties of the Shannon entropy for discrete random variables. See e.g. [86], chapter 8. In this manuscript we will usually write simply “entropy” when referring to the differential entropy.
  49. S. Kullback and R. A. Leibler, On Information and Sufficiency, The Annals of Mathematical Statistics 22, 79 (1951).
  50. M. Avriel and D. J. Wilde, Optimality proof for the symmetric Fibonacci search technique, Fibonacci Quarterly 4, 265 (1966).
  51. E. van den Berg, Efficient Bayesian phase estimation using mixed priors, Quantum 5, 469 (2021).
  52. Although the differential entropy is not invariant when changing the scale, the differential entropy gain is.
  53. This also works when using sharpness gain, but there is no speedup.
  54. M. C. Cleve R., Ekert A. and M. M., Quantum algorithms revisited, in Proceedings of the Royal Society Lond. A, Vol. 454 (1998) pp. 339–354.
  55. R. Demkowicz-Dobrzański and L. Maccone, Using entanglement against noise in quantum metrology, Phys. Rev. Lett. 113, 250801 (2014).
  56. Digital Library of Mathematical Functions, National Institute of Standards and Technology, https://dlmf.nist.gov/7.17, accessed: 19.01.2024.
  57. J. M. Blair, C. A. Edwards, and J. H. Johnson, Rational Chebyshev Approximations for the Inverse of the Error Function, Mathematics of Computation 30, 827 (1976).
  58. This is possible since |β|≤1𝛽1|\beta|\leq 1| italic_β | ≤ 1.
  59. This is required by normalisation of ps−1⁢(ϕ)subscript𝑝𝑠1italic-ϕp_{s-1}(\phi)italic_p start_POSTSUBSCRIPT italic_s - 1 end_POSTSUBSCRIPT ( italic_ϕ ).
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com