Quantum Origin of Limit Cycles, Fixed Points, and Critical Slowing Down (2405.08866v2)
Abstract: Among the most iconic features of classical dissipative dynamics are persistent limit-cycle oscillations and critical slowing down at the onset of such oscillations, where the system relaxes purely algebraically in time. On the other hand, quantum systems subject to generic Markovian dissipation decohere exponentially in time, approaching a unique steady state. Here we show how coherent limit-cycle oscillations and algebraic decay can emerge in a quantum system governed by a Markovian master equation as one approaches the classical limit, illustrating general mechanisms using a single-spin model and a two-site lossy Bose-Hubbard model. In particular, we demonstrate that the fingerprint of a limit cycle is a slow-decaying branch with vanishing decoherence rates in the Liouville spectrum, while a power-law decay is realized by a spectral collapse at the bifurcation point. We also show how these are distinct from the case of a classical fixed point, for which the quantum spectrum is gapped and can be generated from the linearized classical dynamics.
- P. Ehrenfest, Bemerkung über die angenäherte Gültigkeit der klassischen Mechanik innerhalb der Quantenmechanik, Z. Phys. 45, 455 (1927).
- K. Hepp, The classical limit for quantum mechanical correlation functions, Commun. Math. Phys. 35, 265 (1974).
- L. G. Yaffe, Large N𝑁Nitalic_N limits as classical mechanics, Rev. Mod. Phys. 54, 407 (1982).
- L. E. Reichl and W. A. Lin, The search for a quantum KAM theorem, Found. Phys. 17, 689 (1987).
- M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer, New York, 1990).
- W. H. Zurek, Decoherence and the transition from quantum to classical, Phys. Today 44, 36 (1991).
- U. Klein, What is the limit ℏ→0→Planck-constant-over-2-pi0\hbar\to 0roman_ℏ → 0 of quantum theory?, Am. J. Phys. 80, 1009 (2012).
- O. Bohigas, M. J. Giannoni, and C. Schmit, Characterization of chaotic quantum spectra and universality of level fluctuation laws, Phys. Rev. Lett. 52, 1 (1984).
- D. T. Robb and L. E. Reichl, Chaos in a two-spin system with applied magnetic field, Phys. Rev. E 57, 2458 (1998).
- J. Emerson and L. Ballentine, Characteristics of quantum-classical correspondence for two interacting spins, Phys. Rev. A 63, 052103 (2001).
- M. A. Bastarrachea-Magnani, S. Lerma-Hernández, and J. G. Hirsch, Comparative quantum and semiclassical analysis of atom-field systems. II. Chaos and regularity, Phys. Rev. A 89, 032102 (2014).
- M. Rautenberg and M. Gärttner, Classical and quantum chaos in a three-mode bosonic system, Phys. Rev. A 101, 053604 (2020).
- S. Pappalardi, A. Polkovnikov, and A. Silva, Quantum echo dynamics in the Sherrington-Kirkpatrick model, SciPost Phys. 9, 21 (2020).
- A. Lerose and S. Pappalardi, Bridging entanglement dynamics and chaos in semiclassical systems, Phys. Rev. A 102, 032404 (2020).
- L. E. Reichl, The Transition to Chaos: Conservative Classical Systems and Quantum Manifestations, 3rd ed. (Springer, 2021).
- J. Novotný and P. Stránský, Relative asymptotic oscillations of the out-of-time-ordered correlator as a quantum chaos indicator, Phys. Rev. E 107, 054220 (2023).
- G. Nakerst and M. Haque, Chaos in the three-site Bose-Hubbard model: Classical versus quantum, Phys. Rev. E 107, 024210 (2023).
- R. Hilborn, Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers (Oxford University Press, 2000).
- G. Lindblad, On the generators of quantum dynamical semigroups, Commun. Math. Phys. 48, 119 (1976).
- V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, Completely positive dynamical semigroups of N𝑁Nitalic_N-level systems, J. Math. Phys. 17, 821 (1976).
- H. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, 2002).
- D. E. Evans, Irreducible quantum dynamical semigroups, Commun. Math. Phys. 54, 293 (1977).
- B. Buča and T. Prosen, A note on symmetry reductions of the Lindblad equation: transport in constrained open spin chains, New J. Phys. 14, 073007 (2012).
- V. V. Albert and L. Jiang, Symmetries and conserved quantities in Lindblad master equations, Phys. Rev. A 89, 022118 (2014).
- A. Giraldo, N. G. Broderick, and B. Krauskopf, Chaotic switching in driven-dissipative Bose-Hubbard dimers: when a flip bifurcation meets a T-point in ℝ4superscriptℝ4\mathbb{R}^{4}blackboard_R start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT, Discret. Contin. Dyn. Syst. Ser. B 27, 4023 (2022a).
- W. T. Strunz and I. C. Percival, Classical mechanics from quantum state diffusion-a phase-space approach, J. Phys. A 31, 1801 (1998).
- J. Dubois, U. Saalmann, and J. M. Rost, Semi-classical Lindblad master equation for spin dynamics, J. Phys. A 54, 235201 (2021).
- T. K. Leen, R. Friel, and D. Nielsen, Eigenfunctions of the multidimensional linear noise Fokker-Planck operator via ladder operators, arXiv:1609.01194 .
- T. Prosen and T. H. Seligman, Quantization over boson operator spaces, J. Phys. A 43, 392004 (2010).
- T. E. Lee and H. R. Sadeghpour, Quantum synchronization of quantum van der Pol oscillators with trapped ions, Phys. Rev. Lett. 111, 234101 (2013).
- T. E. Lee, C.-K. Chan, and S. Wang, Entanglement tongue and quantum synchronization of disordered oscillators, Phys. Rev. E 89, 022913 (2014).
- S. Walter, A. Nunnenkamp, and C. Bruder, Quantum synchronization of two Van der Pol oscillators, Ann. Phys. (Berlin) 527, 131 (2014).
- A. Roulet and C. Bruder, Synchronizing the smallest possible system, Phys. Rev. Lett. 121, 053601 (2018).
- J. S. Ferreira and P. Ribeiro, Lipkin-Meshkov-Glick model with Markovian dissipation: A description of a collective spin on a metallic surface, Phys. Rev. B 100, 184422 (2019).
- S. Dutta and N. R. Cooper, Critical response of a quantum van der Pol oscillator, Phys. Rev. Lett. 123, 250401 (2019).
- W.-K. Mok, L.-C. Kwek, and H. Heimonen, Synchronization boost with single-photon dissipation in the deep quantum regime, Phys. Rev. Res. 2, 033422 (2020).
- K. Seibold, R. Rota, and V. Savona, Dissipative time crystal in an asymmetric nonlinear photonic dimer, Phys. Rev. A 101, 033839 (2020).
- L. Ben Arosh, M. C. Cross, and R. Lifshitz, Quantum limit cycles and the Rayleigh and van der Pol oscillators, Phys. Rev. Res. 3, 013130 (2021).
- Y. Kato and H. Nakao, Turing instability in quantum activator–inhibitor systems, Sci. Rep. 12, 15573 (2022).
- N. Thomas and M. Senthilvelan, Quantum synchronization in quadratically coupled quantum van der Pol oscillators, Phys. Rev. A 106, 012422 (2022).
- A. Tomadin, S. Diehl, and P. Zoller, Nonequilibrium phase diagram of a driven and dissipative many-body system, Phys. Rev. A 83, 013611 (2011).
- Z. Cai and T. Barthel, Algebraic versus exponential decoherence in dissipative many-particle systems, Phys. Rev. Lett. 111, 150403 (2013).
- M. Žnidarič, Relaxation times of dissipative many-body quantum systems, Phys. Rev. E 92, 042143 (2015).
- M. V. Medvedyeva and S. Kehrein, Power-law approach to steady state in open lattices of noninteracting electrons, Phys. Rev. B 90, 205410 (2014).
- B. Baumgartner and H. Narnhofer, Analysis of quantum semigroups with GKS–Lindblad generators: II. General, J. Phys. A 41, 395303 (2008).
- B. Buča, J. Tindall, and D. Jaksch, Non-stationary coherent quantum many-body dynamics through dissipation, Nat. Commun. 10, 1730 (2019).
- B. Buča and D. Jaksch, Dissipation induced nonstationarity in a quantum gas, Phys. Rev. Lett. 123, 260401 (2019).
- C. Booker, B. Buča, and D. Jaksch, Non-stationarity and dissipative time crystals: spectral properties and finite-size effects, New J. Phys. 22, 085007 (2020).
- L. F. dos Prazeres, L. da Silva Souza, and F. Iemini, Boundary time crystals in collective d𝑑ditalic_d-level systems, Phys. Rev. B 103, 184308 (2021).
- B. Buča, C. Booker, and D. Jaksch, Algebraic theory of quantum synchronization and limit cycles under dissipation, SciPost Phys. 12, 097 (2022).
- H. Alaeian and B. Buča, Exact multistability and dissipative time crystals in interacting fermionic lattices, Commun. Phys. 5, 318 (2022).
- J. Dubois, U. Saalmann, and J. M. Rost, Symmetry-induced decoherence-free subspaces, Phys. Rev. Res. 5, L012003 (2023).
- J. Tindall, D. Jaksch, and C. S. Muñoz, On the generality of symmetry breaking and dissipative freezing in quantum trajectories, SciPost Phys. Core 6, 004 (2023).
- X. Li, Y. Li, and J. Jin, Synchronization of persistent oscillations in spin systems with nonlocal dissipation, Phys. Rev. A 107, 032219 (2023a).
- Y. Li, X. Li, and J. Jin, Quantum nonstationary phenomena of spin systems in collision models, Phys. Rev. A 107, 042205 (2023b).
- Y. Nakanishi and T. Sasamoto, Dissipative time crystals originating from parity-time symmetry, Phys. Rev. A 107, L010201 (2023).
- F. Iemini, D. Chang, and J. Marino, Dynamics of inhomogeneous spin ensembles with all-to-all interactions: Breaking permutational invariance, Phys. Rev. A 109, 032204 (2024).
- A. Ronveaux and F. M. Arscott, Heun’s Differential Equations (Oxford University Press, 1995).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.