Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 20 tok/s
GPT-5 High 23 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 441 tok/s Pro
Kimi K2 212 tok/s Pro
2000 character limit reached

Rapid parameter estimation for pulsar-timing-array datasets with variational inference and normalizing flows (2405.08857v1)

Published 14 May 2024 in gr-qc, astro-ph.HE, and astro-ph.IM

Abstract: In the gravitational-wave analysis of pulsar-timing-array datasets, parameter estimation is usually performed using Markov Chain Monte Carlo methods to explore posterior probability densities. We introduce an alternative procedure that relies instead on stochastic gradient-descent Bayesian variational inference, whereby we obtain the weights of a neural-network approximation of the posterior by minimizing the Kullback-Leibler divergence of the approximation from the exact posterior. This technique is distinct from simulation-based inference with normalizing flows, since we train the network for a single dataset, rather than the population of all possible datasets, and we require the computation of the data likelihood and its gradient. Unlike Markov Chain methods, our technique can transparently exploit highly parallel computing platforms. This makes it extremely fast on modern graphical processing units, where it can analyze the NANOGrav 15-yr dataset in few tens of minutes, depending on the probabilistic model, as opposed to hours or days with the analysis codes used until now. We expect that this speed will unlock new kinds of astrophysical and cosmological studies of pulsar-timing-array datasets. Furthermore, variational inference would be viable in other contexts of gravitational-wave data analysis as long as differentiable and parallelizable likelihoods are available.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (44)
  1. G. Agazie et al. (NANOGrav), The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background, Astrophys. J. Lett. 951, L8 (2023a), arXiv:2306.16213 [astro-ph.HE] .
  2. J. Antoniadis et al. (EPTA), The second data release from the European Pulsar Timing Array III. Search for gravitational wave signals,   (2023a), arXiv:2306.16214 [astro-ph.HE] .
  3. D. J. Reardon et al., Search for an Isotropic Gravitational-wave Background with the Parkes Pulsar Timing Array, Astrophys. J. Lett. 951, L6 (2023), arXiv:2306.16215 [astro-ph.HE] .
  4. H. Xu et al., Searching for the Nano-Hertz Stochastic Gravitational Wave Background with the Chinese Pulsar Timing Array Data Release I, Res. Astron. Astrophys. 23, 075024 (2023), arXiv:2306.16216 [astro-ph.HE] .
  5. G. Agazie et al. (NANOGrav), The NANOGrav 15 yr Data Set: Constraints on Supermassive Black Hole Binaries from the Gravitational-wave Background, Astrophys. J. Lett. 952, L37 (2023b), arXiv:2306.16220 [astro-ph.HE] .
  6. J. Antoniadis et al. (EPTA), The second data release from the European Pulsar Timing Array: V. Implications for massive black holes, dark matter and the early Universe,   (2023b), arXiv:2306.16227 [astro-ph.CO] .
  7. J. Antoniadis et al. (EPTA), The second data release from the European Pulsar Timing Array IV. Search for continuous gravitational wave signals,   (2023c), arXiv:2306.16226 [astro-ph.HE] .
  8. G. Agazie et al. (NANOGrav), The NANOGrav 15 yr Data Set: Bayesian Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries, Astrophys. J. Lett. 951, L50 (2023c), arXiv:2306.16222 [astro-ph.HE] .
  9. A. Afzal et al. (NANOGrav), The NANOGrav 15 yr Data Set: Search for Signals from New Physics, Astrophys. J. Lett. 951, L11 (2023), arXiv:2306.16219 [astro-ph.HE] .
  10. R. W. Hellings and G. S. Downs, Upper limits on the isotropic gravitational radiation background from pulsar timing analysis, ApJ 265, L39 (1983).
  11. S. R. Taylor, Nanohertz Gravitational Wave Astronomy (CRC Press, Boca Raton, FL, 2021).
  12. C. C. Margossian and A. Gelman, For how many iterations should we run Markov chain Monte Carlo?,   (2023), arXiv:2311.02726 .
  13. M. A. McLaughlin, The North American Nanohertz Observatory for Gravitational Waves, Classical and Quantum Gravity 30, 224008 (2013), arXiv:1310.0758 [astro-ph.IM] .
  14. S. Ransom et al., The NANOGrav Program for Gravitational Waves and Fundamental Physics, in Bulletin of the American Astronomical Society, Vol. 51 (2019) p. 195, arXiv:1908.05356 [astro-ph.IM] .
  15. J. Ellis and R. van Haasteren, jellis18/ptmcmcsampler: Official release (2017).
  16. C. R. Harris et al., Array programming with NumPy, Nature 585, 357 (2020).
  17. A. D. Johnson et al., The NANOGrav 15-year Gravitational-Wave Background Analysis Pipeline,   (2023), arXiv:2306.16223 .
  18. B. B. P. Perera et al., The International Pulsar Timing Array: second data release, MNRAS 490, 4666 (2019), arXiv:1909.04534 [astro-ph.HE] .
  19. R. Neal, MCMC Using Hamiltonian Dynamics, in Handbook of Markov Chain Monte Carlo (2011) pp. 113–162.
  20. C. J. T. Braak, A Markov Chain Monte Carlo version of the genetic algorithm differential evolution: easy Bayesian computing for real parameter spaces, Statistics and Computing 16, 239 (2006).
  21. J. Goodman and J. Weare, Ensemble samplers with affine invariance, Communications in applied mathematics and computational science 5, 65 (2010).
  22. B. Carpenter, Ensemble methods are doomed to fail in high dimensions (2017), statmodeling.stat.columbia.edu/2017/03/15/ensemble-methods-doomed-fail-high-dimensions.
  23. C. J. Geyer, Markov chain Monte Carlo maximum likelihood, in Computing science and statistics: proceedings of the 23rd symposium on the interface (Interface Foundation, 1991) pp. 156–163.
  24. D. Frenkel and D. Chandler, Speed-up of Monte Carlo simulations by sampling of rejected states, Proceedings of the National Academy of Sciences of the United States of America 101, 17571 (2004).
  25. D. J. Rezende and S. Mohamed, Variational inference with normalizing flows, in Proceedings of the 32nd International Conference on International Conference on Machine Learning, ICML’15, Vol. 37 (JMLR.org, 2015) p. 1530–1538.
  26. E. Tabak and E. Vanden-Eijnden, Density estimation by dual ascent of the log-likelihood, Communications in Mathematical Sciences 8, 217 (2010).
  27. E. Tabak and C. Turner, A family of nonparametric density estimation algorithms, Communications on Pure and Applied Mathematics 66, 145 (2013).
  28. D. P. Kingma and M. Welling, Auto-Encoding Variational Bayes,   (2013), arXiv:1312.6114 .
  29. L. Dinh, J. Sohl-Dickstein, and S. Bengio, Density estimation using Real NVP,   (2017), arXiv:1605.08803 .
  30. G. Papamakarios, T. Pavlakou, and I. Murray, Masked autoregressive flow for density estimation, Advances in neural information processing systems 30 (2017).
  31. D. Ward, FlowJax: Distributions and normalizing flows in JAX (2022), github.com/danielward27/flowjax.
  32. M. Vallisneri et al., DISCOVERY: the next-generation pulsar-timing-array data-analysis package (2024), in preparation.
  33. D. J. Rezende, S. Mohamed, and D. Wierstra, Stochastic backpropagation and approximate inference in deep generative models, in International conference on machine learning (PMLR, 2014) pp. 1278–1286.
  34. G. Agazie et al., The NANOGrav 15 yr Data Set: Observations and Timing of 68 Millisecond Pulsars, ApJ 951, L9 (2023), arXiv:2306.16217 [astro-ph.HE] .
  35. The NANOGrav Collaboration, The NANOGrav 15-year data set, 10.5281/zenodo.8423265 (2023).
  36. D. Phan, N. Pradhan, and M. Jankowiak, Composable effects for flexible and accelerated probabilistic programming in NumPyro,   (2019), arXiv:1912.11554 .
  37. E. Hellinger, Neue Begründung der Theorie quadratischer Formen von unendlichvielen Veränderlichen, Journal für die reine und angewandte Mathematik 136, 210 (1909).
  38. V. Elvira, L. Martino, and C. P. Robert, Rethinking the effective sample size, International Statistical Review 90, 525.
  39. S. R. Green, C. Simpson, and J. Gair, Gravitational-wave parameter estimation with autoregressive neural network flows, Phys. Rev. D 102, 104057 (2020), arXiv:2002.07656 [astro-ph.IM] .
  40. S. R. Green and J. Gair, Complete parameter inference for GW150914 using deep learning, Mach. Learn. Sci. Tech. 2, 03LT01 (2021), arXiv:2008.03312 [astro-ph.IM] .
  41. R. van Haasteren, Pulsar timing arrays require hierarchical models,   (2024), in preparation.
  42. W. G. Lamb, S. R. Taylor, and R. van Haasteren, Rapid refitting techniques for Bayesian spectral characterization of the gravitational wave background using pulsar timing arrays, Phys. Rev. D 108, 103019 (2023), arXiv:2303.15442 [astro-ph.HE] .
  43. S. Bozinovski, Reminder of the first paper on transfer learning in neural networks, 1976, Informatica 44 (2020).
  44. T. Edwards, Ripple: Differentiable gravitational waveforms with JAX (2023), github.com/tedwards2412/ripple.
Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.