Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Local well-posedness and regularity properties for an initial-boundary value problem associated to the fifth order Korteweg-de Vries equation (2405.08757v1)

Published 14 May 2024 in math.AP

Abstract: In this work we prove that the initial-boundary value problem (IBVP) for the fifth order Korteweg-de Vries equation \begin{align*} \left. \begin{array}{rlr} u_t+\partial_x5 u+u\partial_x u&\hspace{-2mm}=0,&\quad x\in\mathbb R+,\; t\in\mathbb R+,\ u(x,0)&\hspace{-2mm}=g(x),&\ u(0,t)=h_1(t),\, \partial_x u(0,t)&\hspace{-2mm}=h_2(t),\,\partial_x2 u(0,t)=h_3(t), \end{array} \right} \end{align*} is locally well posed, when the data $g$, $h_1$, $h_2$, $h_3$ are taken in such a way that $g\in Hs(\mathbb R_x+)$, and $h_{j+1}\in H{\frac{s+2-j}5}(\mathbb R_t+)$, $j=0,1,2$, $s\in [0,\frac{11}4)\setminus {\frac12,\frac32,\frac52}$, and satisfy the following compatibility conditions: \begin{align*} g(0)=h_1(0) \text{ if } \frac12<s<\frac32;\ g(0)=h_1(0),\; g'(0)=h_2(0) \text{ if } \frac32<s<\frac52;\ g(0)=h_1(0), \; g'(0)=h_2(0),\; g''(0)=h_3(0) \text{ if } \frac52<s<\frac{11}4. \end{align*} Besides, we prove that the nonlinear part of the solution is smoother than the initial datum $g$.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com