Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lower Regularity Solutions of the Non-homogeneous Boundary-Value Problem for a Higher Order Boussinesq Equation in a Quarter Plane (2111.14065v1)

Published 28 Nov 2021 in math.AP

Abstract: We continue to study the initial-boundary-value problem of the sixth order Boussinesq equation in a quarter plane with non-homogeneous boundary conditions: \begin{equation*} \begin{cases} u_{tt}-u_{xx}+\beta u_{xxxx}-u_{xxxxxx}+(u2)_{xx}=0,\quad x,t\in \mathbb{R}+,\ u(x,0)=\varphi (x), u_t(x,0)=\psi ''(x), \ u(0,t)=h_1(t), u_{xx}(0,t)=h_2(t), u_{xxxx}(0,t)=h_3(t), \end{cases} \end{equation*} where $\beta=\pm1$. We show that the problem is locally analytically well-posed in the space $Hs(\mathbb{R}+)$ for any $ s> -\frac34 $ with the initial-value data $$(\varphi,\psi)\in Hs(\mathbb{R}+)\times H{s-1}(\mathbb{R}+)$$ and the boundary-value data $$(h_1,h_2,h_3) \in H{\frac{s+1}{3}}(\mathbb{R}+)\times H{\frac{s-1}{3}}(\mathbb{R}+)\times H{\frac{s-3}{3}}(\mathbb{R}+).$$

Summary

We haven't generated a summary for this paper yet.