Learning How to Dynamically Decouple (2405.08689v2)
Abstract: Current quantum computers suffer from noise that stems from interactions between the quantum system that constitutes the quantum device and its environment. These interactions can be suppressed through dynamical decoupling to reduce computational errors. However, the performance of dynamical decoupling depends on the type of the system-environment interactions that are present, which often lack an accurate model in quantum devices. We show that the performance of dynamical decoupling can be improved by optimizing its rotational gates to tailor them to the quantum hardware. We find that compared to canonical decoupling sequences, such as CPMG, XY4, and UR6, the optimized dynamical decoupling sequences yield the best performance in suppressing noise in superconducting qubits. Our work thus enhances existing error suppression methods which helps increase circuit depth and result quality on noisy hardware.
- K. Temme, S. Bravyi, and J. M. Gambetta, Error mitigation for short-depth quantum circuits, Phys. Rev. Lett. 119, 180509 (2017).
- L. Viola and S. Lloyd, Dynamical suppression of decoherence in two-state quantum systems, Phys. Rev. A 58, 2733 (1998).
- N. Earnest, C. Tornow, and D. J. Egger, Pulse-efficient circuit transpilation for quantum applications on cross-resonance-based hardware, Phys. Rev. Res. 3, 043088 (2021).
- U. Haeberlen and J. S. Waugh, Coherent averaging effects in magnetic resonance, Phys. Rev. 175, 453 (1968).
- D. A. Lidar and T. A. Brun, Quantum error correction (Cambridge university press, 2013).
- G. S. Uhrig, Keeping a quantum bit alive by optimized π𝜋\piitalic_π-pulse sequences, Phys. Rev. Lett. 98, 100504 (2007).
- G. Quiroz and D. A. Lidar, Optimized dynamical decoupling via genetic algorithms, Phys. Rev. A 88, 052306 (2013).
- M. August and X. Ni, Using recurrent neural networks to optimize dynamical decoupling for quantum memory, Phys. Rev. A 95, 012335 (2017).
- L. Shirizly, G. Misguich, and H. Landa, Dissipative dynamics of graph-state stabilizers with superconducting qubits, Phys. Rev. Lett. 132, 010601 (2024).
- D. J. Egger and F. K. Wilhelm, Adaptive hybrid optimal quantum control for imprecisely characterized systems, Phys. Rev. Lett. 112, 240503 (2014).
- C. Tong, H. Zhang, and B. Pokharel, Empirical learning of dynamical decoupling on quantum processors (2024), arXiv:2403.02294 [quant-ph] .
- L. Viola, E. Knill, and S. Lloyd, Dynamical decoupling of open quantum systems, Phys. Rev. Lett. 82, 2417 (1999).
- A. J. Berglund, Quantum coherence and control in one- and two-photon optical systems (2000), arXiv:quant-ph/0010001 [quant-ph] .
- E. L. Hahn, Spin echoes, Phys. Rev. 80, 580 (1950).
- H. Y. Carr and E. M. Purcell, Effects of diffusion on free precession in nuclear magnetic resonance experiments, Phys. Rev. 94, 630 (1954).
- S. Meiboom and D. Gill, Modified spin-echo method for measuring nuclear relaxation times, Rev. Sci. Instrum. 29, 688 (1958).
- A. Maudsley, Modified Carr-Purcell-Meiboom-Gill sequence for NMR fourier imaging applications, J. Magn. Reson. 69, 488 (1986).
- S. H. Sack and D. J. Egger, Large-scale quantum approximate optimization on nonplanar graphs with machine learning noise mitigation, Phys. Rev. Res. 6, 013223 (2024).
- D. Gottesman and I. L. Chuang, Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations, Nature 402, 390 (1999).
- K. Vogel and H. Risken, Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase, Phys. Rev. A 40, 2847 (1989).
- T. J. Dunn, I. A. Walmsley, and S. Mukamel, Experimental determination of the quantum-mechanical state of a molecular vibrational mode using fluorescence tomography, Phys. Rev. Lett. 74, 884 (1995).
- Z. Hradil, Quantum-state estimation, Phys. Rev. A 55, R1561 (1997).
- J. A. Smolin, J. M. Gambetta, and G. Smith, Efficient method for computing the maximum-likelihood quantum state from measurements with additive gaussian noise, Phys. Rev. Lett. 108, 070502 (2012).
- J. Spall, Multivariate stochastic approximation using a simultaneous perturbation gradient approximation, IEEE Trans. Autom. Control 37, 332 (1992).
- J. Spall, Accelerated second-order stochastic optimization using only function measurements, in Proc. 36th IEEE Conf. Decis. Control, Vol. 2 (1997) pp. 1417–1424 vol.2.
- B. M. Terhal, Quantum error correction for quantum memories, Rev. Mod. Phys. 87, 307 (2015).
- The numbers are as reported from the backends. Furthermore, ibm_torino implements two-qubit CZ gates with tunable couplers while ibm_sherbrooke uses the cross-resonance interaction.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.