Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Horocycle flows on abelian covers of surfaces of negative curvature (2405.08592v2)

Published 14 May 2024 in math.DS

Abstract: We consider the unit speed parametrization of the horocycle flow on infinite Abelian covers of compact surfaces of negative curvature. We prove an asymptotic result for the ergodic integrals of sufficiently regular functions. In the case of constant curvature, where the unit speed and the uniformly contracting parametrizations of horocycles coincide, we recover a result by Ledrappier and Sarig. Our method, which does not use symbolic dynamics, is based on a general Fourier decomposition for Abelian covers and on the study of spectral theory of weighted (and twisted) transfer operators for the geodesic flow acting on appropriate anisotropic Banach spaces. Finally, as a byproduct result, we obtain a power deviation estimate for the horocycle ergodic averages on compact surfaces, without requiring any pinching condition as in previous results.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com