Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Horocycle averages on closed manifolds and transfer operators (1809.04062v4)

Published 11 Sep 2018 in math.DS, math.SP, and nlin.CD

Abstract: We adapt to $Cr$ Anosov flows on compact manifolds a construction for $Cr$ discrete-time hyperbolic dynamics ($r>1$), obtaining anisotropic Banach or Hilbert spaces on which the resolvent of the generator of weighted transfer operators for the flow is quasi-compact. We apply this to study the ergodic integrals of the horocycle flows $h_\rho$ of $Cr$ codimension one mixing Anosov flows. In dimension three, for any suitably bunched $C3$ contact Anosov flow with orientable strong-stable distribution, we establish power-law convergence of the ergodic average. We thereby implement the program of Giulietti-Liverani in the "real-life setting" of geodesic flows in variable negative curvature, where nontrivial resonances exist.

Citations (24)

Summary

We haven't generated a summary for this paper yet.