Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 98 tok/s Pro
GPT OSS 120B 424 tok/s Pro
Kimi K2 164 tok/s Pro
2000 character limit reached

A novel multi-photon entangled state with enhanced resilience to path loss (2405.08127v1)

Published 13 May 2024 in quant-ph

Abstract: In the realm of quantum information, entanglement stands as a cornerstone phenomenon. It underpins a vast array of quantum information processes, offering significant potential for advancements in quantum computing, communication, and sensing. This paper introduces a novel multi-photon entangled state, which generalizes the maximally entangled single-photon state and exhibits remarkable resilience to signal attenuation in photonic applications. We demonstrate the novelty of the proposed state through a simplified target detection model and illustrate its superior performance over traditional single-photon protocols, attributed to its higher entanglement level and enhanced noise suppression capabilities. Our findings suggest that the proposed multi-photon state holds significant promise for enhancing the efficiency and reliability of photonic applications subject to loss. This work lays the groundwork for future exploration into the practical applications of multi-photon entangled states in quantum technologies, potentially revolutionizing our approach to quantum sensing and beyond

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. J. S. Bell, “On the einstein podolsky rosen paradox,” Physics Physique Fizika, vol. 1, pp. 195–200, Nov 1964. [Online]. Available: https://link.aps.org/doi/10.1103/PhysicsPhysiqueFizika.1.195
  2. R. P. Feynman, “Simulating physics with computers,” International journal of theoretical physics, vol. 21, no. 6/7, pp. 467–488, 1982.
  3. C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” Theoretical Computer Science, vol. 560, p. 7–11, Dec. 2014. [Online]. Available: http://dx.doi.org/10.1016/j.tcs.2014.05.025
  4. S. Lloyd, “Enhanced sensitivity of photodetection via quantum illumination,” Science, vol. 321, no. 5895, pp. 1463–1465, 2008.
  5. D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu, “Bell inequalities for arbitrarily high-dimensional systems,” Phys. Rev. Lett., vol. 88, p. 040404, Jan 2002. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.88.040404
  6. D. Kaszlikowski, P. Gnaciński, M. Żukowski, W. Miklaszewski, and A. Zeilinger, “Violations of local realism by two entangled qunits are stronger than for two qubits,” Physical Review Letters, vol. 85, no. 21, p. 4418–4421, Nov. 2000. [Online]. Available: http://dx.doi.org/10.1103/PhysRevLett.85.4418
  7. X.-M. Hu, Y. Guo, B.-H. Liu, Y.-F. Huang, C.-F. Li, and G.-C. Guo, “Beating the channel capacity limit for superdense coding with entangled ququarts,” Science Advances, vol. 4, no. 7, p. eaat9304, 2018. [Online]. Available: https://www.science.org/doi/abs/10.1126/sciadv.aat9304
  8. L. Sheridan and V. Scarani, “Security proof for quantum key distribution using qudit systems,” Physical Review A, vol. 82, no. 3, Sep. 2010. [Online]. Available: http://dx.doi.org/10.1103/PhysRevA.82.030301
  9. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature, vol. 412, no. 6844, p. 313–316, Jul. 2001. [Online]. Available: http://dx.doi.org/10.1038/35085529
  10. I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, “Time-bin entangled qubits for quantum communication created by femtosecond pulses,” Phys. Rev. A, vol. 66, p. 062308, Dec 2002. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.66.062308
  11. R. Jin, R. Shimizu, M. Fujiwara, M. Takeoka, R. Wakabayashi, T. Yamashita, S. Miki, H. Terai, T. Gerrits, and M. Sasaki, “Simple method of generating and distributing frequency-entangled qudits,” Quantum Science and Technology, vol. 1, p. 015004, 11 2016.
  12. M. Żukowski, A. Zeilinger, and M. A. Horne, “Realizable higher-dimensional two-particle entanglements via multiport beam splitters,” Phys. Rev. A, vol. 55, pp. 2564–2579, Apr 1997. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevA.55.2564
  13. M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, “Super-resolving phase measurements with a multiphoton entangled state,” Nature, vol. 429, no. 6988, p. 161–164, May 2004. [Online]. Available: http://dx.doi.org/10.1038/nature02493
  14. M. Malik, M. Erhard, M. Huber, M. Krenn, R. Fickler, and A. Zeilinger, “Multi-photon entanglement in high dimensions,” Nature Photonics, vol. 10, no. 4, p. 248–252, Feb. 2016. [Online]. Available: http://dx.doi.org/10.1038/nphoton.2016.12
  15. M. Oszmaniec, R. Augusiak, C. Gogolin, J. Kołodyński, A. Acín, and M. Lewenstein, “Random bosonic states for robust quantum metrology,” Physical Review X, vol. 6, no. 4, Dec. 2016. [Online]. Available: http://dx.doi.org/10.1103/PhysRevX.6.041044
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com