Quantised helicity in optical media (2405.08086v1)
Abstract: Optical helicity quantifies the handedness of light, and plays a central role in the description of interactions between light and chiral matter. In free space, it is related to the duality symmetry of the electromagnetic field, a continuous symmetry encapsulating the invariance of Maxwell's equations under the interchange of electric and magnetic fields. However, in materials the situation is not so straightforward, as the free space transformation must be extended to encompass mixing of both the $\mathbf{E}$/$\mathbf{H}$ and $\mathbf{D}$/$\mathbf{B}$ field pairs. The simultaneous direct interchange of $\mathbf{E}$/$\mathbf{H}$ and of $\mathbf{D}$/$\mathbf{B}$ is incompatible with the presence of linear constitutive relations. In this work, we extend the duality transform in a way that resolves this incompatibility, and use this to define the optical helicity in a general medium, which may be dispersive, lossy, chiral or nonreciprocal. We find that the helicity density must contain an explicit contribution associated with the polarisation and magnetisation of the matter, and we show that the form of this matter contribution is independent of the details of the medium. We also show that the in-medium helicity can be naturally expressed in terms of the elementary quantised excitations of the system.
- S. Weinberg, The Quantum Theory of Fields (Cambridge University Press, 1995).
- M. Srednicki, Quantum Field Theory (Cambridge University Press, 2007).
- M. Born and E. Wolf, Principes of Optics 7th ed. (Cambridge University Press, 1999).
- D. P. Craig and T. Thirunamachandran, Molecular quantum electrodynamics (Dover, 1998).
- L. D. Barron, Molecular light scattering and optical activity (Cambridge University Press, 2004).
- R. P. Cameron, S. M. Barnett, and A. M. Yao, New Journal of Physics 16, 013020 (2014).
- N. Kravets, A. Aleksanyan, and E. Brasselet, Physical Review Letters 122, 024301 (2019).
- O. Heaviside, Philosophical Transactions of the Royal Society A 183, 423 (1892).
- J. Larmor, Philosophical Transactions of the Royal Society A 190, 205 (1897).
- H. Bateman, The Mathematical Analysis of Electrical and Optical Wave-motion on the Basis of Maxwell’s Equations (University press, 1915).
- J. A. Stratton, Electromagnetic theory (McGraw-Hill Book Company, 1941).
- S. M. Barnett, R. P. Cameron, and A. M. Yao, Physical Review A 86, 013845 (2012).
- G. Nienhuis, Physcal Review A 93, 023840 (2016).
- M. E. Rose, Multipole Fields (Wiley, 1955) Chap. 1.5.
- J. D. Jackson, Classical electrodynamics, 3rd ed. (Wiley, 1998) Chap. 6.
- S. M. Barnett and R. Loudon, New Journal of Physics 17, 063027 (2015).
- K. Van Kruining and J. B. Götte, Journal of Optics 18, 085601 (2016).
- J. J. Hopfield, Phys. Rev. 112, 1555 (1958).
- B. Huttner, J. J. Baumberg, and S. M. Barnett, Europhysics Letters (EPL) 16, 177 (1991).
- Please see supplemental information at this url.
- J. L. Trueba and A. F. Rañada, European Journal of Physics 17, 141 (1996).
- B. Huttner and S. M. Barnett, Europhysics Letters (EPL) 18, 487 (1992a).
- N. A. R. Baht and J. E. Sipe, Physical Review A 73, 063808 (2006).
- B. Huttner and S. M. Barnett, Phys. Rev. A 46, 4306 (1992b).
- T. G. Philbin, New Journal of Physics 12, 123008 (2010).
- S. Scheel and S. Y. Buhmann, Acta Physica Slovaca 58, 675 (2008).
- S. A. R. Horsely, Physical Review A 84, 063822 (2011).
- E. Noether, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1918, 235 (1918).
- D. E. Neuenschwander, Emmy Noether’s Wonderful Theorem (Johns Hopkins University Press, 2010).
- M. Bañados and I. Reyes, International Journal of Modern Physics D 25, 1630021 (2016).
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.