Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graph $p$-Laplacian eigenpairs as saddle points of a family of spectral energy functions (2405.07056v2)

Published 11 May 2024 in math.NA and cs.NA

Abstract: We address the problem of computing the graph $p$-Laplacian eigenpairs for $p\in (2,\infty)$. We propose a reformulation of the graph $p$-Laplacian eigenvalue problem in terms of a constrained weighted Laplacian eigenvalue problem and discuss theoretical and computational advantages. We provide a correspondence between $p$-Laplacian eigenpairs and linear eigenpair of a constrained generalized weighted Laplacian eigenvalue problem. As a result, we can assign an index to any $p$-Laplacian eigenpair that matches the Morse index of the $p$-Rayleigh quotient evaluated at the eigenfunction. In the second part of the paper we introduce a class of spectral energy functions that depend on edge and node weights. We prove that differentiable saddle points of the $k$-th energy function correspond to $p$-Laplacian eigenpairs having index equal to $k$. Moreover, the first energy function is proved to possess a unique saddle point which corresponds to the unique first $p$-Laplacian eigenpair. Finally we develop novel gradient-based numerical methods suited to compute $p$-Laplacian eigenpairs for any $p\in(2,\infty)$ and present some experiments.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com