Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Super-Resolving Blurry Images with Events (2405.06918v1)

Published 11 May 2024 in cs.CV

Abstract: Super-resolution from motion-blurred images poses a significant challenge due to the combined effects of motion blur and low spatial resolution. To address this challenge, this paper introduces an Event-based Blurry Super Resolution Network (EBSR-Net), which leverages the high temporal resolution of events to mitigate motion blur and improve high-resolution image prediction. Specifically, we propose a multi-scale center-surround event representation to fully capture motion and texture information inherent in events. Additionally, we design a symmetric cross-modal attention module to fully exploit the complementarity between blurry images and events. Furthermore, we introduce an intermodal residual group composed of several residual dense Swin Transformer blocks, each incorporating multiple Swin Transformer layers and a residual connection, to extract global context and facilitate inter-block feature aggregation. Extensive experiments show that our method compares favorably against state-of-the-art approaches and achieves remarkable performance.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. Q. Wang, T. Han, Z. Qin, J. Gao, and X. Li, “Multitask attention network for lane detection and fitting,” IEEE TNNLS, vol. 33, no. 3, pp. 1066–1078, 2022.
  2. Z. Xin, S. Chen, T. Wu, Y. Shao, W. Ding, and X. You, “Few-shot object detection: Research advances and challenges,” Information Fusion, vol. 107, p. 102307, 2024.
  3. Z. Wu, J. Wen, Y. Xu, J. Yang, X. Li, and D. Zhang, “Enhanced spatial feature learning for weakly supervised object detection,” IEEE TNNLS, vol. 35, no. 1, pp. 961–972, 2024.
  4. Y. Wu, L. Wang, L. Zhang, Y. Bai, Y. Cai, S. Wang, and Y. Li, “Improving autonomous detection in dynamic environments with robust monocular thermal slam system,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 203, pp. 265–284, 2023.
  5. Y. Ge, L. Zhang, Y. Wu, and D. Hu, “Pipo-slam: Lightweight visual-inertial slam with preintegration merging theory and pose-only descriptions of multiple view geometry,” IEEE Transactions on Robotics, vol. 40, pp. 2046–2059, 2024.
  6. J. Liang, J. Cao, G. Sun, K. Zhang, L. Van Gool, and R. Timofte, “Swinir: Image restoration using swin transformer,” in ICCV, 2021, pp. 1833–1844.
  7. Z. Chen, Y. Zhang, J. Gu, L. Kong, X. Yuan et al., “Cross aggregation transformer for image restoration,” NeurIPS, vol. 35, pp. 25 478–25 490, 2022.
  8. Z. Chen, Y. Zhang, J. Gu, L. Kong, X. Yang, and F. Yu, “Dual aggregation transformer for image super-resolution,” in ICCV, 2023, pp. 12 312–12 321.
  9. H. Park and K. Mu Lee, “Joint estimation of camera pose, depth, deblurring, and super-resolution from a blurred image sequence,” in ICCV, 2017, pp. 4613–4621.
  10. G. Han, M. Wang, H. Zhu, and C. Lin, “Mpdnet: An underwater image deblurring framework with stepwise feature refinement module,” Engineering Applications of Artificial Intelligence, vol. 126, p. 106822, 2023.
  11. H. Jung, Y. Kim, H. Jang, N. Ha, and K. Sohn, “Multi-task learning framework for motion estimation and dynamic scene deblurring,” IEEE TIP, vol. 30, pp. 8170–8183, 2021.
  12. A. Singh, F. Porikli, and N. Ahuja, “Super-resolving noisy images,” in CVPR, 2014, pp. 2846–2853.
  13. K. Zhang, W. Zuo, and L. Zhang, “Learning a single convolutional super-resolution network for multiple degradations,” in CVPR, 2018, pp. 3262–3271.
  14. N. Fang and Z. Zhan, “High-resolution optical flow and frame-recurrent network for video super-resolution and deblurring,” Neurocomputing, vol. 489, pp. 128–138, 2022.
  15. J. Liang, K. Zhang, S. Gu, L. Van Gool, and R. Timofte, “Flow-based kernel prior with application to blind super-resolution,” in CVPR, 2021, pp. 10 601–10 610.
  16. W. Niu, K. Zhang, W. Luo, and Y. Zhong, “Blind motion deblurring super-resolution: When dynamic spatio-temporal learning meets static image understanding,” IEEE TIP, vol. 30, pp. 7101–7111, 2021.
  17. S. Nah, S. Son, S. Lee, R. Timofte, and K. M. Lee, “Ntire 2021 challenge on image deblurring,” in CVPR, 2021, pp. 149–165.
  18. J. Pan, H. Bai, J. Dong, J. Zhang, and J. Tang, “Deep blind video super-resolution,” in ICCV, 2021, pp. 4811–4820.
  19. J.-S. Yun, M. H. Kim, H.-I. Kim, and S. B. Yoo, “Kernel adaptive memory network for blind video super-resolution,” Expert Systems with Applications, vol. 238, p. 122252, 2024.
  20. H. Bai and J. Pan, “Self-supervised deep blind video super-resolution,” IEEE TPAMI, 2024.
  21. X. Li, W. Zuo, and C. C. Loy, “Learning generative structure prior for blind text image super-resolution,” in CVPR, 2023, pp. 10 103–10 113.
  22. J. Chen, B. Li, and X. Xue, “Scene text telescope: Text-focused scene image super-resolution,” in CVPR, 2021, pp. 12 026–12 035.
  23. X. Li, C. Chen, X. Lin, W. Zuo, and L. Zhang, “From face to natural image: Learning real degradation for blind image super-resolution,” in ECCV.   Springer, 2022, pp. 376–392.
  24. D. Zhang, Z. Liang, and J. Shao, “Joint image deblurring and super-resolution with attention dual supervised network,” Neurocomputing, vol. 412, pp. 187–196, 2020.
  25. T. Barman and B. Deka, “A deep learning-based joint image super-resolution and deblurring framework,” IEEE Transactions on Artificial Intelligence, 2023.
  26. B. Wang, J. He, L. Yu, G.-S. Xia, and W. Yang, “Event enhanced high-quality image recovery,” in ECCV.   Springer, 2020, pp. 155–171.
  27. J. Han, Y. Yang, C. Zhou, C. Xu, and B. Shi, “Evintsr-net: Event guided multiple latent frames reconstruction and super-resolution,” in ICCV, 2021, pp. 4882–4891.
  28. L. Yu, B. Wang, X. Zhang, H. Zhang, W. Yang, J. Liu, and G.-S. Xia, “Learning to super-resolve blurry images with events,” IEEE TPAMI, 2023.
  29. F. Xu, L. Yu, B. Wang, W. Yang, G.-S. Xia, X. Jia, Z. Qiao, and J. Liu, “Motion deblurring with real events,” in ICCV, 2021, pp. 2583–2592.
  30. Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin transformer: Hierarchical vision transformer using shifted windows,” in ICCV, 2021, pp. 10 012–10 022.
  31. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” NeurIPS, vol. 30, 2017.
  32. R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unreasonable effectiveness of deep features as a perceptual metric,” in CVPR, 2018, pp. 586–595.
  33. S. Nah, T. Hyun Kim, and K. Mu Lee, “Deep multi-scale convolutional neural network for dynamic scene deblurring,” in CVPR, 2017, pp. 3883–3891.
  34. S. Nah, S. Baik, S. Hong, G. Moon, S. Son, R. Timofte, and K. Mu Lee, “Ntire 2019 challenge on video deblurring and super-resolution: Dataset and study,” in CVPRW, 2019, pp. 1974–1984.
  35. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in ICLR, 2015.
  36. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE TIP, vol. 13, no. 4, pp. 600–612, 2004.
  37. S. W. Zamir, A. Arora, S. Khan, M. Hayat, F. S. Khan, M.-H. Yang, and L. Shao, “Multi-stage progressive image restoration,” in CVPR, 2021.
  38. L. Sun, C. Sakaridis, J. Liang, Q. Jiang, K. Yang, P. Sun, Y. Ye, K. Wang, and L. V. Gool, “Event-based fusion for motion deblurring with cross-modal attention,” in ECCV.   Springer, 2022, pp. 412–428.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com