Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning to Super-Resolve Blurry Images with Events (2302.13766v1)

Published 27 Feb 2023 in cs.CV

Abstract: Super-Resolution from a single motion Blurred image (SRB) is a severely ill-posed problem due to the joint degradation of motion blurs and low spatial resolution. In this paper, we employ events to alleviate the burden of SRB and propose an Event-enhanced SRB (E-SRB) algorithm, which can generate a sequence of sharp and clear images with High Resolution (HR) from a single blurry image with Low Resolution (LR). To achieve this end, we formulate an event-enhanced degeneration model to consider the low spatial resolution, motion blurs, and event noises simultaneously. We then build an event-enhanced Sparse Learning Network (eSL-Net++) upon a dual sparse learning scheme where both events and intensity frames are modeled with sparse representations. Furthermore, we propose an event shuffle-and-merge scheme to extend the single-frame SRB to the sequence-frame SRB without any additional training process. Experimental results on synthetic and real-world datasets show that the proposed eSL-Net++ outperforms state-of-the-art methods by a large margin. Datasets, codes, and more results are available at https://github.com/ShinyWang33/eSL-Net-Plusplus.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com