Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Better Algorithms for Constructing Minimum Cost Markov Chains and AIFV Codes (2405.06831v1)

Published 10 May 2024 in cs.DS

Abstract: The problem of constructing optimal AIFV codes is a special case of that of constructing minimum cost Markov Chains. This paper provides the first complete proof of correctness for the previously known iterative algorithm for constructing such Markov chains. A recent work describes how to efficiently solve the Markov Chain problem by first constructing a Markov Chain Polytope and then running the Ellipsoid algorithm for linear programming on it. This paper's second result is that, in the AIFV case, a special property of the polytope instead permits solving the corresponding linear program using simple binary search

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. An optimality proof of the iterative algorithm for AIFV-m𝑚mitalic_m codes. In 2018 IEEE International Symposium on Information Theory (ISIT), pages 2187–2191, 2018. doi: 10.1109/ISIT.2018.8437861.
  2. An iterative algorithm to optimize the average performance of markov chains with finite states. In 2019 IEEE International Symposium on Information Theory (ISIT), pages 1902–1906, 2019. doi: 10.1109/ISIT.2019.8849856.
  3. On a redundancy of AIFV-m𝑚mitalic_m codes for m =3,5. In 2020 IEEE International Symposium on Information Theory (ISIT), pages 2355–2359, 2020. doi: 10.1109/ISIT44484.2020.9174219.
  4. R. G. Gallager. Discrete stochastic processes. OpenCourseWare: Massachusetts Institute of Technology, 2011.
  5. M. Golin and E. Harb. A polynomial time algorithm for constructing optimal binary aifv-2 codes. IEEE Transactions on Information Theory, 69(10):6269–6278, 2023. doi: 10.1109/TIT.2023.3287587.
  6. M. J. Golin and E. Harb. Speeding up the AIFV-2 dynamic programs by two orders of magnitude using range minimum queries. Theor. Comput. Science., 865:99–118, 2021. doi: 10.1016/j.tcs.2021.02.040.
  7. Speeding up AIFV-m𝑚mitalic_m dynamic programs by m−1𝑚1m-1italic_m - 1 orders of magnitude. In 2022 IEEE International Symposium on Information Theory (ISIT), pages 246–251.
  8. The markov-chain polytope with applications. arXiv:2401.11622, 2024.
  9. The ellipsoid method and its consequences in combinatorial optimization. Combinatorica, 1(2):169–197, Jun 1981. ISSN 1439-6912. doi: 10.1007/BF02579273.
  10. Worst-case redundancy of optimal binary AIFV codes and their extended codes. IEEE Transactions on Information Theory, 63(8):5074–5086, 2017. doi: 10.1109/TIT.2017.2694017.
  11. K.-I. Iwata and H. Yamamoto. Joint coding for discrete sources and finite-state noiseless channels. In 2022 IEEE International Symposium on Information Theory (ISIT), pages 3327–3332.
  12. K.-I. Iwata and H. Yamamoto. A dynamic programming algorithm to construct optimal code trees of AIFV codes. In 2016 International Symposium on Information Theory and Its Applications (ISITA), pages 641–645, 2016.
  13. K.-I. Iwata and H. Yamamoto. Aivf codes based on iterative algorithm and dynamic programming. In 2021 IEEE International Symposium on Information Theory (ISIT), pages 2018–2023, 2021.
  14. H. Yamamoto and K.-I. Iwata. An iterative algorithm to construct optimal binary AIFV-m𝑚mitalic_m codes. In 2017 IEEE Information Theory Workshop (ITW), pages 519–523, 2017. doi: 10.1109/ITW.2017.8277992.
  15. Almost instantaneous fixed-to-variable length codes. IEEE Transactions on Information Theory, 61(12):6432–6443, 2015. doi: 10.1109/TIT.2015.2492961.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com