Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A (Weakly) Polynomial Algorithm for AIVF Coding (2405.06805v1)

Published 10 May 2024 in cs.DS

Abstract: It is possible to improve upon Tunstall coding using a collection of multiple parse trees. The best such results so far are Iwata and Yamamoto's maximum cost AIVF codes. The most efficient algorithm for designing such codes is an iterative one that could run in exponential time. In this paper, we show that this problem fits into the framework of a newly developed technique that uses linear programming with the Ellipsoid method to solve the minimum cost Markov chain problem. This permits constructing maximum cost AIVF codes in (weakly) polynomial time.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (14)
  1. D. Dubé and F. Haddad. Individually optimal single- and multiple-tree almost instantaneous variable-to-fixed codes. 2018 IEEE International Symposium on Information Theory (ISIT), pages 2192–2196.
  2. An optimality proof of the iterative algorithm for AIFV-m𝑚mitalic_m codes. In 2018 IEEE International Symposium on Information Theory (ISIT), pages 2187–2191, 2018. doi: 10.1109/ISIT.2018.8437861.
  3. An iterative algorithm to optimize the average performance of markov chains with finite states. In 2019 IEEE International Symposium on Information Theory (ISIT), pages 1902–1906, 2019. doi: 10.1109/ISIT.2019.8849856.
  4. On a redundancy of AIFV-m𝑚mitalic_m codes for m =3,5. In 2020 IEEE International Symposium on Information Theory (ISIT), pages 2355–2359, 2020. doi: 10.1109/ISIT44484.2020.9174219.
  5. R. G. Gallager. Discrete stochastic processes. OpenCourseWare: Massachusetts Institute of Technology, 2011.
  6. The markov-chain polytope with applications. arXiv:2401.11622, 2024.
  7. The ellipsoid method and its consequences in combinatorial optimization. Combinatorica, 1(2):169–197, Jun 1981. ISSN 1439-6912. doi: 10.1007/BF02579273.
  8. Worst-case redundancy of optimal binary AIFV codes and their extended codes. IEEE Transactions on Information Theory, 63(8):5074–5086, 2017. doi: 10.1109/TIT.2017.2694017.
  9. K.-I. Iwata and H. Yamamoto. AIVF codes based on iterative algorithm and dynamic programming. In 2021 IEEE International Symposium on Information Theory (ISIT), pages 2018–2023.
  10. K.-I. Iwata and H. Yamamoto. A dynamic programming algorithm to construct optimal code trees of AIFV codes. In 2016 International Symposium on Information Theory and Its Applications (ISITA), pages 641–645, 2016.
  11. B. TUNSTALL. Synthesis of noiseless compression codes. Ph. D. thesis, Georgia Inst. Tech., Atlanta, 1968.
  12. H. Yamamoto and K.-I. Iwata. An iterative algorithm to construct optimal binary AIFV-m𝑚mitalic_m codes. In 2017 IEEE Information Theory Workshop (ITW), pages 519–523, 2017. doi: 10.1109/ITW.2017.8277992.
  13. H. Yamamoto and H. Yokoo. Average-sense optimality and competitive optimality for almost instantaneous vf codes. IEEE Transactions on Information Theory, 47(6):2174–2184, 2001.
  14. Almost instantaneous fixed-to-variable length codes. IEEE Transactions on Information Theory, 61(12):6432–6443, 2015. doi: 10.1109/TIT.2015.2492961.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com