Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Acceleration of Power System Dynamic Simulations using a Deep Equilibrium Layer and Neural ODE Surrogate (2405.06827v1)

Published 10 May 2024 in eess.SY and cs.SY

Abstract: The dominant paradigm for power system dynamic simulation is to build system-level simulations by combining physics-based models of individual components. The sheer size of the system along with the rapid integration of inverter-based resources exacerbates the computational burden of running time domain simulations. In this paper, we propose a data-driven surrogate model based on implicit machine learning -- specifically deep equilibrium layers and neural ordinary differential equations -- to learn a reduced order model of a portion of the full underlying system. The data-driven surrogate achieves similar accuracy and reduction in simulation time compared to a physics-based surrogate, without the constraint of requiring detailed knowledge of the underlying dynamic models. This work also establishes key requirements needed to integrate the surrogate into existing simulation workflows; the proposed surrogate is initialized to a steady state operating point that matches the power flow solution by design.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. U. Markovic, J. Vorwerk, P. Aristidou, and G. Hug, “Stability Analysis of Converter Control Modes in Low-Inertia Power Systems,” in 2018 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), Sarajevo, Bosnia and Herzegovina, Oct. 2018, pp. 1–6.
  2. J. D. Lara, R. Henriquez-Auba, D. Ramasubramanian, S. Dhople, D. S. Callaway, and S. Sanders, “Revisiting Power Systems Time-domain Simulation Methods and Models,” Jan. 2023, arXiv:2301.10043 [cs, eess]. [Online]. Available: http://arxiv.org/abs/2301.10043
  3. R. Henriquez-Auba, J. D. Lara, C. Roberts, and D. S. Callaway, “Grid forming inverter small signal stability: Examining role of line and voltage dynamics,” in IECON 2020 the 46th annual conference of the IEEE industrial electronics society.   IEEE, 2020, pp. 4063–4068.
  4. J.-S. Brouillon, M. Colombino, D. Groß, and F. Dörfler, “The effect of transmission-line dynamics on a globally synchronizing controller for power inverters,” in 2018 European Control Conference (ECC), Jun. 2018, pp. 2242–2247.
  5. W. Wang, G. M. Huang, P. Kansal, L. E. Anderson, R. J. O’Keefe, D. Ramasubramanian, P. Mitra, and E. Farantatos, “Instability of PLL-Synchronized Converter-Based Generators in Low Short-Circuit Systems and the Limitations of Positive Sequence Modeling,” in 2018 North American Power Symposium (NAPS), Sep. 2018, pp. 1–6.
  6. B. Badrzadeh, “Electromagnetic transient simulation models for large-scale system impact studies in power systems having a high penetration of inverter-based resources - ESIG.” [Online]. Available: https://www.esig.energy/electromagnetic-transient-simulation-models-for-large-scale-system-impact-studies-in-power-systems-having-a-high-penetration-of-inverter-based-resources/
  7. “Odessa Disturbance Texas Events: May 9, 2021 and June 26, 2021 Joint NERC and Texas RE Staff Report,” Tech. Rep., Sep. 2021. [Online]. Available: https://www.nerc.com/pa/rrm/ea/Pages/May-June-2021-Odessa-Disturbance.aspx
  8. R. W. Kenyon, B. Wang, A. Hoke, J. Tan, and B. M. Hodge, “Comparison of Electromagnetic Transient and Phasor Dynamic Simulations: Implications for Inverter Dominated Systems,” in 2023 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Jan. 2023, pp. 1–5.
  9. J. D. Lara, R. Henriquez-Auba, D. Ramasubramanian, S. Dhople, D. Callaway, and S. Sanders, “Revisiting power systems time-domain simulation methods and models,” IEEE Transactions on Power Systems, pp. 1–16, 2023.
  10. D. Charles, “Off the grid.” Science (New York, NY), vol. 381, no. 6662, pp. 1042–1045, 2023.
  11. V. Purba, B. B. Johnson, M. Rodriguez, S. Jafarpour, F. Bullo, and S. V. Dhople, “Reduced-order Aggregate Model for Parallel-connected Single-phase Inverters,” IEEE Transactions on Energy Conversion, vol. 34, no. 2, pp. 824–837, Jun. 2019.
  12. V. Purba, B. B. Johnson, S. Jafarpour, F. Bullo, and S. V. Dhople, “Dynamic Aggregation of Grid-Tied Three-Phase Inverters,” IEEE Transactions on Power Systems, vol. 35, no. 2, pp. 1520–1530, Mar. 2020.
  13. Z. Ma, Z. Wang, Y. Wang, R. Diao, and D. Shi, “Mathematical Representation of WECC Composite Load Model,” Journal of Modern Power Systems and Clean Energy, vol. 8, no. 5, pp. 1015–1023, Sep. 2020.
  14. “Model User Guide for Generic Renewable Energy System Models,” EPRI, Technical Update, Jul. 2018. [Online]. Available: https://www.epri.com/research/products/3002014083
  15. “Value and Limitations of the Positive Sequence Generic Models of Renewable Energy Systems,” WECC Modeling and Validation Working Group, Tech. Rep., Dec. 2015.
  16. R. Anantharaman, Y. Ma, S. Gowda, C. Laughman, V. Shah, A. Edelman, and C. Rackauckas, “Accelerating Simulation of Stiff Nonlinear Systems using Continuous-Time Echo State Networks,” Mar. 2021, arXiv:2010.04004 [cs, math]. [Online]. Available: http://arxiv.org/abs/2010.04004
  17. C. Ren, Y. Xu, and R. Zhang, “An Interpretable Deep Learning Method for Power System Transient Stability Assessment via Tree Regularization,” IEEE Transactions on Power Systems, vol. 37, no. 5, pp. 3359–3369, Sep. 2022.
  18. P. Sarajcev, A. Kunac, G. Petrovic, and M. Despalatovic, “Power System Transient Stability Assessment Using Stacked Autoencoder and Voting Ensemble,” Energies, vol. 14, no. 11, p. 3148, Jan. 2021.
  19. M. Senyuk, M. Safaraliev, F. Kamalov, and H. Sulieman, “Power System Transient Stability Assessment Based on Machine Learning Algorithms and Grid Topology,” Mathematics, vol. 11, no. 3, p. 525, Jan. 2023. [Online]. Available: https://www.mdpi.com/2227-7390/11/3/525
  20. G. S. Misyris, A. Venzke, and S. Chatzivasileiadis, “Physics-Informed Neural Networks for Power Systems,” in 2020 IEEE Power Energy Society General Meeting (PESGM), Aug. 2020, pp. 1–5.
  21. J. Vorwerk, T. Zufferey, P. Aristidou, and G. Hug, “Using Quantile Forecasts for Dynamic Equivalents of Active Distribution Grids under Uncertainty,” in 11th Bulk Power Systems Dynamics and Control Symposium (IREP 2022), Banff, Canada, Jul. 2022, p. 13.
  22. A. Azmy and I. Erlich, “Identification of dynamic equivalents for distribution power networks using recurrent ANNs,” in IEEE PES Power Systems Conference and Exposition, 2004., Oct. 2004, pp. 348–353.
  23. Y. Zhou and P. Zhang, “Neuro-Reachability of Networked Microgrids,” IEEE Transactions on Power Systems, vol. 37, no. 1, pp. 142–152, Jan. 2022.
  24. T. Xiao, Y. Chen, S. Huang, T. He, and H. Guan, “Feasibility Study of Neural ODE and DAE Modules for Power System Dynamic Component Modeling,” IEEE Transactions on Power Systems, pp. 1–13, 2022, conference Name: IEEE Transactions on Power Systems.
  25. R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud, “Neural Ordinary Differential Equations,” in Advances in Neural Information Processing Systems 31 (NeurIPS 2018).
  26. S. Bai, J. Z. Kolter, and V. Koltun, “Deep Equilibrium Models,” in Advances in Neural Information Processing Systems 32 (NeurIPS 2019).   arXiv, arXiv:1909.01377 [cs, stat].
  27. L. El Ghaoui, F. Gu, B. Travacca, A. Askari, and A. Tsai, “Implicit Deep Learning,” SIAM Journal on Mathematics of Data Science, vol. 3, no. 3, pp. 930–958, Jan. 2021.
  28. R. H. Park, “Two-reaction theory of synchronous machines generalized method of analysis-part I,” Transactions of the American Institute of Electrical Engineers, vol. 48, no. 3, p. 716, 1929.
  29. A. Pal, A. Edelman, and C. Rackauckas, “Mixing Implicit and Explicit Deep Learning with Skip DEQs and Infinite Time Neural ODEs (Continuous DEQs),” 2022. [Online]. Available: http://arxiv.org/abs/2201.12240
  30. S. Kim, W. Ji, S. Deng, Y. Ma, and C. Rackauckas, “Stiff neural ordinary differential equations,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 31, no. 9, p. 093122, Sep. 2021.
  31. D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” Jan. 2017, arXiv:1412.6980 [cs]. [Online]. Available: http://arxiv.org/abs/1412.6980
  32. J. D. Lara, R. Henriquez-Auba, M. Bossart, D. S. Callaway, and C. Barrows, “PowerSimulationsDynamics.jl–an open source modeling package for modern power systems with inverter-based resources,” arXiv preprint arXiv:2308.02921, 2023.
  33. “SciML: Open Source Software for Scientific Machine Learning.” [Online]. Available: https://sciml.ai
  34. R. W. Kenyon, A. Sajadi, A. Hoke, and B.-M. Hodge, “Open-Source PSCAD Grid-Following and Grid-Forming Inverters and A Benchmark for Zero-Inertia Power System Simulations,” in 2021 IEEE Kansas Power and Energy Conference (KPEC), Apr. 2021, pp. 1–6.
  35. S. D’Arco, J. A. Suul, and O. B. Fosso, “A Virtual Synchronous Machine implementation for distributed control of power converters in SmartGrids,” Electric Power Systems Research, vol. 122, pp. 180–197, May 2015.
  36. C. Shen, et. al, “Differentiable modelling to unify machine learning and physical models for geosciences,” Nature Reviews Earth & Environment, vol. 4, no. 8, pp. 552–567, Aug. 2023.
  37. K. Hornik, “Approximation capabilities of multilayer feedforward networks,” Neural Networks, vol. 4, no. 2, pp. 251–257, Jan. 1991.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Matthew Bossart (2 papers)
  2. Jose Daniel Lara (7 papers)
  3. Ciaran Roberts (9 papers)
  4. Rodrigo Henriquez-Auba (8 papers)
  5. Duncan Callaway (9 papers)
  6. Bri-Mathias Hodge (19 papers)

Summary

We haven't generated a summary for this paper yet.