Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Transient Stability Analysis with Physics-Informed Neural Networks (2106.13638v3)

Published 25 Jun 2021 in cs.LG, cs.SY, and eess.SY

Abstract: We explore the possibility to use physics-informed neural networks to drastically accelerate the solution of ordinary differential-algebraic equations that govern the power system dynamics. When it comes to transient stability assessment, the traditionally applied methods either carry a significant computational burden, require model simplifications, or use overly conservative surrogate models. Conventional neural networks can circumvent these limitations but are faced with high demand of high-quality training datasets, while they ignore the underlying governing equations. Physics-informed neural networks are different: they incorporate the power system differential algebraic equations directly into the neural network training and drastically reduce the need for training data. This paper takes a deep dive into the performance of physics-informed neural networks for power system transient stability assessment. Introducing a new neural network training procedure to facilitate a thorough comparison, we explore how physics-informed neural networks compare with conventional differential-algebraic solvers and classical neural networks in terms of computation time, requirements in data, and prediction accuracy. We illustrate the findings on the Kundur two-area system, and assess the opportunities and challenges of physics-informed neural networks to serve as a transient stability analysis tool, highlighting possible pathways to further develop this method.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Jochen Stiasny (14 papers)
  2. Georgios S. Misyris (3 papers)
  3. Spyros Chatzivasileiadis (77 papers)
Citations (11)

Summary

We haven't generated a summary for this paper yet.