Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

TLINet: Differentiable Neural Network Temporal Logic Inference (2405.06670v2)

Published 3 May 2024 in cs.LO and cs.LG

Abstract: There has been a growing interest in extracting formal descriptions of the system behaviors from data. Signal Temporal Logic (STL) is an expressive formal language used to describe spatial-temporal properties with interpretability. This paper introduces TLINet, a neural-symbolic framework for learning STL formulas. The computation in TLINet is differentiable, enabling the usage of off-the-shelf gradient-based tools during the learning process. In contrast to existing approaches, we introduce approximation methods for max operator designed specifically for temporal logic-based gradient techniques, ensuring the correctness of STL satisfaction evaluation. Our framework not only learns the structure but also the parameters of STL formulas, allowing flexible combinations of operators and various logical structures. We validate TLINet against state-of-the-art baselines, demonstrating that our approach outperforms these baselines in terms of interpretability, compactness, rich expressibility, and computational efficiency.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. F. Doshi-Velez and B. Kim, “Towards a rigorous science of interpretable machine learning,” arXiv preprint arXiv:1702.08608, 2017.
  2. E. Tjoa and C. Guan, “A survey on explainable artificial intelligence (xai): Toward medical xai,” IEEE transactions on neural networks and learning systems, vol. 32, no. 11, pp. 4793–4813, 2020.
  3. M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural networks,” IEEE transactions on Signal Processing, vol. 45, no. 11, pp. 2673–2681, 1997.
  4. S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.
  5. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.
  6. O. Maler and D. Nickovic, “Monitoring temporal properties of continuous signals,” in Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems: Joint International Conferences on Formal Modeling and Analysis of Timed Systmes, FORMATS 2004, and Formal Techniques in Real-Time and Fault-Tolerant Systems, FTRTFT 2004, Grenoble, France, September 22-24, 2004. Proceedings.   Springer, 2004, pp. 152–166.
  7. V. Raman, A. Donzé, M. Maasoumy, R. M. Murray, A. Sangiovanni-Vincentelli, and S. A. Seshia, “Model predictive control with signal temporal logic specifications,” in 53rd IEEE Conference on Decision and Control.   IEEE, 2014, pp. 81–87.
  8. L. Lindemann and D. V. Dimarogonas, “Control barrier functions for signal temporal logic tasks,” IEEE control systems letters, vol. 3, no. 1, pp. 96–101, 2018.
  9. W. Liu, D. Li, E. Aasi, R. Tron, and C. Belta, “Interpretable generative adversarial imitation learning,” arXiv preprint arXiv:2402.10310, 2024.
  10. C.-I. Vasile, V. Raman, and S. Karaman, “Sampling-based synthesis of maximally-satisfying controllers for temporal logic specifications,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2017, pp. 3840–3847.
  11. E. Bartocci, L. Bortolussi, and G. Sanguinetti, “Data-driven statistical learning of temporal logic properties,” in International conference on formal modeling and analysis of timed systems.   Springer, 2014, pp. 23–37.
  12. G. Bombara, C.-I. Vasile, F. Penedo, H. Yasuoka, and C. Belta, “A decision tree approach to data classification using signal temporal logic,” in Proceedings of the 19th International Conference on Hybrid Systems: Computation and Control, 2016, pp. 1–10.
  13. S. Mohammadinejad, J. V. Deshmukh, A. G. Puranic, M. Vazquez-Chanlatte, and A. Donzé, “Interpretable classification of time-series data using efficient enumerative techniques,” in Proceedings of the 23rd International Conference on Hybrid Systems: Computation and Control, 2020, pp. 1–10.
  14. G. Bombara and C. Belta, “Offline and online learning of signal temporal logic formulae using decision trees,” ACM Transactions on Cyber-Physical Systems, vol. 5, no. 3, pp. 1–23, 2021.
  15. Z. Xu, M. Ornik, A. A. Julius, and U. Topcu, “Information-guided temporal logic inference with prior knowledge,” in 2019 American control conference (ACC).   IEEE, 2019, pp. 1891–1897.
  16. E. Aasi, C. I. Vasile, M. Bahreinian, and C. Belta, “Classification of time-series data using boosted decision trees,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2022, pp. 1263–1268.
  17. A. Linard, I. Torre, I. Leite, and J. Tumova, “Inference of multi-class stl specifications for multi-label human-robot encounters,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2022, pp. 1305–1311.
  18. T. G. Dietterich, “Machine-learning research,” AI magazine, vol. 18, no. 4, pp. 97–97, 1997.
  19. H. M. Sani, C. Lei, and D. Neagu, “Computational complexity analysis of decision tree algorithms,” in Artificial Intelligence XXXV: 38th SGAI International Conference on Artificial Intelligence, AI 2018, Cambridge, UK, December 11–13, 2018, Proceedings 38.   Springer, 2018, pp. 191–197.
  20. S. Jha, A. Tiwari, S. A. Seshia, T. Sahai, and N. Shankar, “Telex: learning signal temporal logic from positive examples using tightness metric,” Formal Methods in System Design, vol. 54, pp. 364–387, 2019.
  21. K. Leung, N. Aréchiga, and M. Pavone, “Backpropagation for parametric stl,” in 2019 IEEE Intelligent Vehicles Symposium (IV).   IEEE, 2019, pp. 185–192.
  22. A. Ketenci and E. A. Gol, “Learning parameters of ptstl formulas with backpropagation,” in 2020 28th Signal Processing and Communications Applications Conference (SIU).   IEEE, 2020, pp. 1–4.
  23. R. Yan, A. Julius, M. Chang, A. Fokoue, T. Ma, and R. Uceda-Sosa, “Stone: Signal temporal logic neural network for time series classification,” in 2021 International Conference on Data Mining Workshops (ICDMW).   IEEE, 2021, pp. 778–787.
  24. N. Baharisangari, K. Hirota, R. Yan, A. Julius, and Z. Xu, “Weighted graph-based signal temporal logic inference using neural networks,” IEEE Control Systems Letters, vol. 6, pp. 2096–2101, 2021.
  25. G. Chen, Y. Lu, R. Su, and Z. Kong, “Interpretable fault diagnosis of rolling element bearings with temporal logic neural network,” arXiv preprint arXiv:2204.07579, 2022.
  26. N. Mehdipour, C.-I. Vasile, and C. Belta, “Specifying user preferences using weighted signal temporal logic,” IEEE Control Systems Letters, vol. 5, no. 6, pp. 2006–2011, 2020.
  27. P. Varnai and D. V. Dimarogonas, “On robustness metrics for learning stl tasks,” in 2020 American Control Conference (ACC).   IEEE, 2020, pp. 5394–5399.
  28. N. Mehdipour, C.-I. Vasile, and C. Belta, “Specifying user preferences using weighted signal temporal logic,” IEEE Control Systems Letters, vol. 5, no. 6, pp. 2006–2011, 2021.
  29. ——, “Arithmetic-geometric mean robustness for control from signal temporal logic specifications,” in 2019 American Control Conference (ACC).   IEEE, 2019, pp. 1690–1695.
  30. D. Li, M. Cai, C.-I. Vasile, and R. Tron, “Learning signal temporal logic through neural network for interpretable classification,” in 2023 American Control Conference (ACC).   IEEE, 2023, pp. 1907–1914.
  31. A. Donzé and O. Maler, “Robust satisfaction of temporal logic over real-valued signals,” in International Conference on Formal Modeling and Analysis of Timed Systems.   Springer, 2010, pp. 92–106.
  32. E. Asarin, A. Donzé, O. Maler, and D. Nickovic, “Parametric identification of temporal properties,” in Runtime Verification: Second International Conference, RV 2011, San Francisco, CA, USA, September 27-30, 2011, Revised Selected Papers 2.   Springer, 2012, pp. 147–160.
  33. S. Srinivas, A. Subramanya, and R. Venkatesh Babu, “Training sparse neural networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition workshops, 2017, pp. 138–145.
  34. Y. Bengio, N. Léonard, and A. Courville, “Estimating or propagating gradients through stochastic neurons for conditional computation,” arXiv preprint arXiv:1308.3432, 2013.
  35. K. Leung, N. Aréchiga, and M. Pavone, “Back-propagation through signal temporal logic specifications: Infusing logical structure into gradient-based methods,” in Algorithmic Foundations of Robotics XIV: Proceedings of the Fourteenth Workshop on the Algorithmic Foundations of Robotics 14.   Springer, 2021, pp. 432–449.
  36. D. Li and R. Tron, “Multi-class temporal logic neural networks,” 2024.
  37. A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,” in NIPS-W, 2017.
  38. Z. Kong, A. Jones, and C. Belta, “Temporal logics for learning and detection of anomalous behavior,” IEEE Transactions on Automatic Control, vol. 62, no. 3, pp. 1210–1222, 2016.
  39. D. J. Webb and J. Van Den Berg, “Kinodynamic rrt*: Asymptotically optimal motion planning for robots with linear dynamics,” in 2013 IEEE international conference on robotics and automation.   IEEE, 2013, pp. 5054–5061.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Danyang Li (13 papers)
  2. Mingyu Cai (21 papers)
  3. Cristian-Ioan Vasile (27 papers)
  4. Roberto Tron (54 papers)

Summary

We haven't generated a summary for this paper yet.