Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Backpropagation through Signal Temporal Logic Specifications: Infusing Logical Structure into Gradient-Based Methods (2008.00097v3)

Published 31 Jul 2020 in eess.SY, cs.CL, cs.LO, and cs.SY

Abstract: This paper presents a technique, named STLCG, to compute the quantitative semantics of Signal Temporal Logic (STL) formulas using computation graphs. STLCG provides a platform which enables the incorporation of logical specifications into robotics problems that benefit from gradient-based solutions. Specifically, STL is a powerful and expressive formal language that can specify spatial and temporal properties of signals generated by both continuous and hybrid systems. The quantitative semantics of STL provide a robustness metric, i.e., how much a signal satisfies or violates an STL specification. In this work, we devise a systematic methodology for translating STL robustness formulas into computation graphs. With this representation, and by leveraging off-the-shelf automatic differentiation tools, we are able to efficiently backpropagate through STL robustness formulas and hence enable a natural and easy-to-use integration of STL specifications with many gradient-based approaches used in robotics. Through a number of examples stemming from various robotics applications, we demonstrate that STLCG is versatile, computationally efficient, and capable of incorporating human-domain knowledge into the problem formulation.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Karen Leung (31 papers)
  2. Marco Pavone (314 papers)
  3. Nikos Aréchiga (2 papers)
Citations (80)

Summary

We haven't generated a summary for this paper yet.