Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s
GPT-5 High 12 tok/s Pro
GPT-4o 96 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 217 tok/s Pro
2000 character limit reached

Learning from String Sequences (2405.06301v1)

Published 10 May 2024 in cs.LG, cs.AI, cs.CE, cs.CL, and cs.CV

Abstract: The Universal Similarity Metric (USM) has been demonstrated to give practically useful measures of "similarity" between sequence data. Here we have used the USM as an alternative distance metric in a K-Nearest Neighbours (K-NN) learner to allow effective pattern recognition of variable length sequence data. We compare this USM approach with the commonly used string-to-word vector approach. Our experiments have used two data sets of divergent domains: (1) spam email filtering and (2) protein subcellular localization. Our results with this data reveal that the USM-based K-NN learner (1) gives predictions with higher classification accuracy than those output by techniques that use the string-to-word vector approach, and (2) can be used to generate reliable probability forecasts.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com