Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

New comprehensive description of the scaling evolution of the cosmological magneto-hydrodynamic system (2405.06194v1)

Published 10 May 2024 in astro-ph.CO, hep-ph, and physics.flu-dyn

Abstract: We study the evolution of primordial magnetic fields until the recombination epoch, which is constrained by the conservation of magnetic helicity density if they are maximally helical and by the Hosking integral if they are non-helical. We combine these constraints with conditions obtained by estimating time scales of energy dissipation processes to describe the evolution of magnetic field strength and magnetic coherence length analytically. The dissipation processes depend on whether magnetic or kinetic energy is dominant, whether the decay dynamics is linear or not, and whether the dominant dissipation term is shear viscosity or drag force. We apply the description to compare constraints on primordial magnetic fields at different epochs in the early universe and argue that magnetogenesis before the electroweak symmetry breaking is not feasible.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (76)
  1. A. Neronov and I. Vovk. Evidence for strong extragalactic magnetic fields from Fermi observations of TeV blazars. Science, 328:73–75, 2010.
  2. The intergalactic magnetic field constrained by Fermi/Large Area Telescope observations of the TeV blazar 1ES0229+200. Monthly Notices of the Royal Astronomical Society: Letters, 406(1):L70–L74, July 2010.
  3. Evidence for Gamma-ray Halos Around Active Galactic Nuclei and the First Measurement of Intergalactic Magnetic Fields. Astrophysical Journal Letters, 722(1):L39–L44, October 2010.
  4. Extreme TeV blazars and the intergalactic magnetic field. Monthly Notices of the Royal Astronomical Society: Letters, 414(4):3566–3576, July 2011.
  5. Lower Limit on the Strength and Filling Factor of Extragalactic Magnetic Fields. Astrophysical Journal Letters, 727(1):L4, January 2011.
  6. Determination of intergalactic magnetic fields from gamma ray data. Astroparticle Physics, 35(3):135–139, October 2011.
  7. Extragalactic magnetic fields constraints from simultaneous GeV-TeV observations of blazars. Astronomy & Astrophysics, 529:A144, May 2011.
  8. Time Delay of Cascade Radiation for TeV Blazars and the Measurement of the Intergalactic Magnetic Field. Astrophysical Journal Letters, 733(2):L21, June 2011.
  9. Fermi/LAT Observations of 1ES 0229+200: Implications for Extragalactic Magnetic Fields and Background Light. Astrophysical Journal Letters, 747(1):L14, March 2012.
  10. Lower Bounds on Magnetic Fields in Intergalactic Voids from Long-term GeV-TeV Light Curves of the Blazar Mrk 421. Astrophys. J. Lett., 771:L42, 2013.
  11. Constraints on the Intergalactic Magnetic Field with Gamma-Ray Observations of Blazars. Astrophysical Journal, 814(1):20, November 2015.
  12. M. Ackermann et al. The Search for Spatial Extension in High-latitude Sources Detected by the Fermi Large Area Telescope. ApJS, 237(2):32, 2018.
  13. V. A. Acciari et al. A lower bound on intergalactic magnetic fields from time variability of 1ES 0229+200 from MAGIC and Fermi/LAT observations. Astron. Astrophys., 670:A145, 2023.
  14. Rafael Alves Batista and Andrey Saveliev. Multimessenger Constraints on Intergalactic Magnetic Fields from the Flare of TXS 0506+056. Astrophysical Journal Letters, 902(1):L11, October 2020.
  15. Inflation-produced, large-scale magnetic fields. Physical Review D, 37(10):2743–2754, May 1988.
  16. Bharat Ratra. Cosmological “Seed” Magnetic Field from Inflation. Astrophysical Journal Letters, 391:L1, May 1992.
  17. Primordial magnetic fields from pseudo Goldstone bosons. Physical Review D, 46(12):5346–5351, December 1992.
  18. Craig J. Hogan. Magnetohydrodynamic Effects of a First-Order Cosmological Phase Transition. Phys. Rev. Lett., 51:1488–1491, Oct 1983.
  19. Magnetic Field Generation during the Cosmological QCD Phase Transition. Astrophysical Journal Letters, 344:L49, September 1989.
  20. Primordial magnetic fields generated in the quark-hadron transition. Phys. Rev. D, 50:2421–2424, Aug 1994.
  21. Tanmay Vachaspati. Magnetic fields from cosmological phase transitions. Physics Letters B, 265(3-4):258–261, August 1991.
  22. Baryon isocurvature constraints on the primordial hypermagnetic fields. Journal of Cosmology and Astroparticle Physics, 2021(04):034, 2021.
  23. R. Durrer and A. Neronov. Cosmological magnetic fields: their generation, evolution and observation. The Astronomy and Astrophysics Review, 21(1):1–109, 2013.
  24. Limit on Primordial Small-Scale Magnetic Fields from Cosmic Microwave Background Distortions. Physical Review Letters, 85(4):700–703, July 2000.
  25. R. Banerjee and K. Jedamzik. The Evolution of cosmic magnetic fields: From the very early universe, to recombination, to the present. Phys. Rev. D, 70:123003, 2004.
  26. Jonathan Zrake. Inverse Cascade of Nonhelical Magnetic Turbulence in a Relativistic Fluid. Astrophysical Journal Letters, 794(2):L26, October 2014.
  27. Nonhelical Inverse Transfer of a Decaying Turbulent Magnetic Field. Physical Review Letters, 114(7):075001, February 2015.
  28. Inverse cascade in decaying three-dimensional magnetohydrodynamic turbulence. Physical Review E, 64(5):056405, November 2001.
  29. Classes of hydrodynamic and magnetohydrodynamic turbulent decay. Phys. Rev. Lett., 118(5):055102, 2017.
  30. Evolution of hydromagnetic turbulence from the electroweak phase transition. Physical Review D, 96(12):123528, 2017.
  31. Nonhelical turbulence and the inverse transfer of energy: A parameter study. Physical Review E, 96(5):053105, November 2017.
  32. Kiwan Park. On the inverse transfer of (non-)helical magnetic energy in a decaying magnetohydrodynamic turbulence. Monthly Notices of the Royal Astronomical Society: Letters, 472(2):1628–1640, December 2017.
  33. Reconnection-Controlled Decay of Magnetohydrodynamic Turbulence and the Role of Invariants. Phys. Rev. X, 11:041005, 2021.
  34. L. Woltjer. A Theorem on Force-Free Magnetic Fields. Proceedings of the National Academy of Science, 44(6):489–491, June 1958.
  35. Possibility of an inverse cascade of magnetic helicity in magnetohydrodynamic turbulence. Journal of Fluid Mechanics, 68:769–778, April 1975.
  36. Scaling of the Saffman helicity integral in decaying magnetically-dominated turbulence. arXiv preprint arXiv:2206.07513, 2022.
  37. Turbulence with Magnetic Helicity That Is Absent on Average. Atmosphere, 14(6):932, May 2023.
  38. Inverse cascading for initial magnetohydrodynamic turbulence spectra between Saffman and Batchelor. Journal of Plasma Physics, 89(6):905890606, December 2023.
  39. Resistively controlled primordial magnetic turbulence decay. arXiv e-prints, page arXiv:2401.08569, January 2024.
  40. Phase diagram for magnetic reconnection in heliophysical, astrophysical, and laboratory plasmas. Physics of Plasmas, 18(11):111207, 2011.
  41. Cosmic-void observations reconciled with primordial magnetogenesis. arXiv preprint arXiv:2203.03573, 2022.
  42. New description of the scaling evolution of the cosmological magneto-hydrodynamic system. Phys. Lett. B, 843:138002, 2023.
  43. Low-Scale Inflationary Magnetogenesis without Baryon Isocurvature Problem. 12 2023.
  44. Large-scale magnetic fields from hydromagnetic turbulence in the very early universe. Phys. Rev. D, 54:1291–1300, Jul 1996.
  45. H. K. Moffatt. Magnetic field generation in electrically conducting fluids, volume 2. 1978.
  46. A. Llor. Langevin equation of big structure dynamics in turbulence: Landau’s invariant in the decay of homogeneous isotropic turbulence. European Journal of Mechanics-B/Fluids, 30(5):480–504, 2011.
  47. P. G. Saffman. The large-scale structure of homogeneous turbulence. Journal of Fluid Mechanics, 27:581–593, January 1967.
  48. Garrett Birkhoff. Fourier synthesis of homogeneous turbulence. Communications on Pure and Applied Mathematics, 7(1):19–44, 1954.
  49. G. K. Batchelor and I. Proudman. The Large-Scale Structure of Homogeneous Turbulence. Philosophical Transactions of the Royal Society of London Series A, 248(949):369–405, January 1956.
  50. Fluid Mechanics. 1987.
  51. P. A. Sweet. The Neutral Point Theory of Solar Flares. In B. Lehnert, editor, Electromagnetic Phenomena in Cosmical Physics, volume 6, page 123, January 1958.
  52. E. N. Parker. Sweet’s Mechanism for Merging Magnetic Fields in Conducting Fluids. Journal of Geophysical Research, 62(4):509–520, 1957.
  53. Reconnection rates of magnetic fields including the effects of viscosity. The Physics of fluids, 27(1):137–149, 1984.
  54. Alexander A. Schekochihin. MHD turbulence: a biased review. Journal of Plasma Physics, 88(5):155880501, October 2022.
  55. Dieter Biskamp. Nonlinear magnetohydrodynamics. Cambridge University Press, 1993.
  56. D. Biskamp. Magnetic reconnection via current sheets. Physics of Fluids, 29(5):1520–1531, May 1986.
  57. X-Point Collapse and Saturation in the Nonlinear Tearing Mode Reconnection. Physical Review Letters, 95(23):235003, December 2005.
  58. Instability of current sheets and formation of plasmoid chains. Physics of Plasmas, 14(10):100703–100703, October 2007.
  59. Evolution of the Baryon Asymmetry through the Electroweak Crossover in the Presence of a Helical Magnetic Field. Phys. Rev. D, 94(12):123509, 2016.
  60. Transport coefficients in high temperature gauge theories (I): leading-log results. Journal of High Energy Physics, 2000(11):001, 2000.
  61. Steven Weinberg. Entropy generation and the survival of protogalaxies in an expanding universe. Astrophys. J., 168:175, 1971.
  62. A. Heckler and C. J. Hogan. Neutrino heat conduction and inhomogeneities in the early Universe. Physical Review D, 47(10):4256, 1993.
  63. Donald E. Osterbrock. On Ambipolar Diffusion in H I Regions. Astrophysical Journal, 134:270–272, July 1961.
  64. H. Alfvén. Existence of Electromagnetic-Hydrodynamic Waves. Nature, 150(3805):405–406, October 1942.
  65. H. Alfvén. On the Existence of Electromagnetic-Hydrodynamic Waves. Arkiv for Matematik, Astronomi och Fysik, 29B:1–7, January 1943.
  66. H. K. Moffatt. The degree of knottedness of tangled vortex lines. Journal of Fluid Mechanics, 35:117–129, January 1969.
  67. Jean Jacques Moreau. Constantes d’un îlot tourbillonnaire en fluide parfait barotrope. Comptes rendus hebdomadaires des séances de l’Académie des sciences, 252:2810–2812, 1961.
  68. René J Moreau. Magnetohydrodynamics, volume 3. Springer Science & Business Media, 1990.
  69. Principles of magnetohydrodynamics: with applications to laboratory and astrophysical plasmas. Cambridge university press, 2004.
  70. Sébastien Galtier. Introduction to modern magnetohydrodynamics. Cambridge University Press, 2016.
  71. The topological properties of magnetic helicity. Journal of Fluid Mechanics, 147:133–148, October 1984.
  72. Plasmoid-induced-reconnection and fractal reconnection. Earth, Planets and Space, 53:473–482, June 2001.
  73. Damping of cosmic magnetic fields. Phys. Rev. D, 57:3264–3284, 1998.
  74. Inverse energy transfer in decaying, three-dimensional, non-helical magnetic turbulence due to magnetic reconnection. Monthly Notices of the Royal Astronomical Society: Letters, 501(2):3074–3087, February 2021.
  75. Consistent generation of magnetic fields in axion inflation models. Journal of Cosmology and Astroparticle Physics, 2015(5):054–054, May 2015.
  76. S. I. Braginskii. Transport Processes in a Plasma. Reviews of Plasma Physics, 1:205, January 1965.
Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.