Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 169 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Leptophilic Portals to New Physics at Colliders (2405.06157v1)

Published 10 May 2024 in hep-ph and hep-ex

Abstract: Observed neutrino oscillations imply that the global lepton flavor symmetry of the Standard Model must be broken. Therefore, searches for lepton flavor violation (LFV) are promising probes of new physics beyond the Standard Model. High-energy colliders provide a powerful tool to study LFV effects, which are complementary to the low-energy charged LFV searches. Here we discuss the possibility of LFV signals at colliders arising from exotic Higgs decays, and from leptophilic scalar and vector portal scenarios.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. P. S. B. Dev, Leptophilic dark portals, URL https://indico.cern.ch/event/1303630/contributions/5653731/.
  2. S. T. Petcov, The Processes μ→e+γ,μ→e+e¯,ν′→ν+γformulae-sequence→𝜇𝑒𝛾formulae-sequence→𝜇𝑒¯𝑒→superscript𝜈′𝜈𝛾\mu\rightarrow e+\gamma,\mu\rightarrow e+\overline{e},\nu^{\prime}\rightarrow% \nu+\gammaitalic_μ → italic_e + italic_γ , italic_μ → italic_e + over¯ start_ARG italic_e end_ARG , italic_ν start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT → italic_ν + italic_γ in the Weinberg-Salam Model with Neutrino Mixing, Sov. J. Nucl. Phys. 25, 340 (1977).
  3. Charged Lepton Flavor Violation (2022), 2209.00142.
  4. Charged Lepton Flavour Violation in Heavy Particle Decays (2022), 2205.10576.
  5. R. K. Barman, P. S. B. Dev and A. Thapa, Constraining lepton flavor violating Higgs couplings at the HL-LHC in the vector boson fusion channel, Phys. Rev. D 107(7), 075018 (2023), 10.1103/PhysRevD.107.075018, 2210.16287.
  6. J. Herrero-Garcia, N. Rius and A. Santamaria, Higgs lepton flavour violation: UV completions and connection to neutrino masses, JHEP 11, 084 (2016), 10.1007/JHEP11(2016)084, 1605.06091.
  7. G. Aad et al., Search for the Higgs boson decays H→e⁢e→𝐻𝑒𝑒H\to eeitalic_H → italic_e italic_e and H→e⁢μ→𝐻𝑒𝜇H\to e\muitalic_H → italic_e italic_μ in p⁢p𝑝𝑝ppitalic_p italic_p collisions at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector, Phys. Lett. B 801, 135148 (2020), 10.1016/j.physletb.2019.135148, 1909.10235.
  8. A. M. Sirunyan et al., Search for lepton flavour violating decays of a neutral heavy Higgs boson to μ⁢τ𝜇𝜏\mu\tauitalic_μ italic_τ and eτ𝜏\tauitalic_τ in proton-proton collisions at s=𝑠absent\sqrt{s}=square-root start_ARG italic_s end_ARG = 13 TeV, JHEP 03, 103 (2020), 10.1007/JHEP03(2020)103, 1911.10267.
  9. A. M. Sirunyan et al., Search for lepton-flavor violating decays of the Higgs boson in the μ⁢τ𝜇𝜏\mu\tauitalic_μ italic_τ and eτ𝜏\tauitalic_τ final states in proton-proton collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV, Phys. Rev. D 104(3), 032013 (2021), 10.1103/PhysRevD.104.032013, 2105.03007.
  10. G. Aad et al., Searches for lepton-flavour-violating decays of the Higgs boson into e⁢τ𝑒𝜏e\tauitalic_e italic_τ and μ⁢τ𝜇𝜏\mu\tauitalic_μ italic_τ in s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV p⁢p𝑝𝑝ppitalic_p italic_p collisions with the ATLAS detector, JHEP 07, 166 (2023), 10.1007/JHEP07(2023)166, 2302.05225.
  11. A. Hayrapetyan et al., Search for the lepton-flavor violating decay of the Higgs boson and additional Higgs bosons in the eμ𝜇\muitalic_μ final state in proton-proton collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV, Phys. Rev. D 108(7), 072004 (2023), 10.1103/PhysRevD.108.072004, 2305.18106.
  12. K. Leney, Searches in the BSM Higgs sector, 57th Rencontres de Moriond, Electroweak Interactions & Unified Theories, La Thuile, Italy (2023).
  13. Hints of a new leptophilic Higgs sector?, Phys. Rev. D 109(1), 015003 (2024), 10.1103/PhysRevD.109.015003, 2305.19314.
  14. Neutrino mass models at μ𝜇\muitalic_μTRISTAN, Eur. Phys. J. C 84(2), 148 (2024), 10.1140/epjc/s10052-024-12496-0, 2309.06463.
  15. On the Impact of Lepton PDFs, JHEP 11, 194 (2015), 10.1007/JHEP11(2015)194, 1508.07002.
  16. Leptons in the proton, JHEP 08(08), 019 (2020), 10.1007/JHEP08(2020)019, 2005.06477.
  17. Lepton PDFs and multipurpose single-lepton searches at the LHC, Phys. Rev. D 107(3), 035011 (2023), 10.1103/PhysRevD.107.035011, 2112.12755.
  18. A new Higgs boson with electron-muon flavor-violating couplings, Phys. Lett. B 845, 138129 (2023), 10.1016/j.physletb.2023.138129, 2304.13757.
  19. N. Koivunen and M. Raidal, Production and decays of 146 GeV flavons into eμ𝜇\muitalic_μ final state at the LHC, JHEP 11, 014 (2023), 10.1007/JHEP11(2023)014, 2305.00014.
  20. Growing Excesses of New Scalars at the Electroweak Scale (2023), 2306.17209.
  21. L. Willmann et al., New bounds from searching for muonium to anti-muonium conversion, Phys. Rev. Lett. 82, 49 (1999), 10.1103/PhysRevLett.82.49, hep-ex/9807011.
  22. D. P. Aguillard et al., Measurement of the Positive Muon Anomalous Magnetic Moment to 0.20 ppm, Phys. Rev. Lett. 131(16), 161802 (2023), 10.1103/PhysRevLett.131.161802, 2308.06230.
  23. S. Borsanyi et al., Leading hadronic contribution to the muon magnetic moment from lattice QCD, Nature 593(7857), 51 (2021), 10.1038/s41586-021-03418-1, 2002.12347.
  24. T. Aaltonen et al., High-precision measurement of the W𝑊Witalic_W boson mass with the CDF II detector, Science 376(6589), 170 (2022), 10.1126/science.abk1781.
  25. From the trees to the forest: a review of radiative neutrino mass models, Front. in Phys. 5, 63 (2017), 10.3389/fphy.2017.00063, 1706.08524.
  26. A. Zee, A Theory of Lepton Number Violation, Neutrino Majorana Mass, and Oscillation, Phys. Lett. B 93, 389 (1980), 10.1016/0370-2693(80)90349-4, [Erratum: Phys.Lett.B 95, 461 (1980)].
  27. Non-Standard Interactions in Radiative Neutrino Mass Models, JHEP 03, 006 (2020), 10.1007/JHEP03(2020)006, 1907.09498.
  28. P. Langacker, The Physics of Heavy Z′superscript𝑍′Z^{\prime}italic_Z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT Gauge Bosons, Rev. Mod. Phys. 81, 1199 (2009), 10.1103/RevModPhys.81.1199, 0801.1345.
  29. R. Foot, New Physics From Electric Charge Quantization?, Mod. Phys. Lett. A 6, 527 (1991), 10.1142/S0217732391000543.
  30. Simplest Z-prime model, Phys. Rev. D 44, 2118 (1991), 10.1103/PhysRevD.44.2118.
  31. Model for a light Z-prime boson, Phys. Rev. D 50, 4571 (1994), 10.1103/PhysRevD.50.4571, hep-ph/9401250.
  32. B. A. Dobrescu and F. Yu, Dijet and electroweak limits on a Z’ boson coupled to quarks, Phys. Rev. D 109(3), 035004 (2024), 10.1103/PhysRevD.109.035004, 2112.05392.
  33. Searching for heavy leptophilic Z’: from lepton colliders to gravitational waves, JHEP 12, 011 (2023), 10.1007/JHEP12(2023)011, 2308.12804.
  34. Collider limits on leptophilic interactions, JHEP 03, 059 (2015), 10.1007/JHEP03(2015)059, 1411.7394.
  35. Z’ mediated WIMPs: dead, dying, or soon to be detected?, JCAP 11, 024 (2019), 10.1088/1475-7516/2019/11/024, 1907.05893.
  36. R. Abbott et al., Upper limits on the isotropic gravitational-wave background from Advanced LIGO and Advanced Virgo’s third observing run, Phys. Rev. D 104(2), 022004 (2021), 10.1103/PhysRevD.104.022004, 2101.12130.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 0 likes.