Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scalable Learning of Segment-Level Traffic Congestion Functions (2405.06080v2)

Published 9 May 2024 in cs.LG

Abstract: We propose and study a data-driven framework for identifying traffic congestion functions (numerical relationships between observations of traffic variables) at global scale and segment-level granularity. In contrast to methods that estimate a separate set of parameters for each roadway, ours learns a single black-box function over all roadways in a metropolitan area. First, we pool traffic data from all segments into one dataset, combining static attributes with dynamic time-dependent features. Second, we train a feed-forward neural network on this dataset, which we can then use on any segment in the area. We evaluate how well our framework identifies congestion functions on observed segments and how it generalizes to unobserved segments and predicts segment attributes on a large dataset covering multiple cities worldwide. For identification error on observed segments, our single data-driven congestion function compares favorably to segment-specific model-based functions on highway roads, but has room to improve on arterial roads. For generalization, our approach shows strong performance across cities and road types: both on unobserved segments in the same city and on zero-shot transfer learning between cities. Finally, for predicting segment attributes, we find that our approach can approximate critical densities for individual segments using their static properties.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. L. Ljung, “System identification,” in Signal analysis and prediction.   Springer, 1998, pp. 163–173.
  2. T. Deng, K. Zhang, and Z.-J. M. Shen, “A systematic review of a digital twin city: A new pattern of urban governance toward smart cities,” Journal of Management Science and Engineering, vol. 6, no. 2, pp. 125–134, 2021.
  3. D. M. Bramich, M. Menéndez, and L. Ambühl, “Fitting empirical fundamental diagrams of road traffic: A comprehensive review and comparison of models using an extensive data set,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 9, pp. 14 104–14 127, 2022.
  4. M. Treiber, A. Kesting, M. Treiber, and A. Kesting, “Trajectory and floating-car data,” Traffic Flow Dynamics: Data, Models and Simulation, pp. 7–12, 2013.
  5. R. D. Kuhne, “Foundations of traffic flow theory i: Greenshields’ legacy–highway traffic,” in Symposium on the Fundamental Diagram: 75 Years (Greenshields 75 Symposium) Transportation Research Board, 2008.
  6. T. Courbon and L. Leclercq, “Cross-comparison of macroscopic fundamental diagram estimation methods,” Procedia-Social and Behavioral Sciences, vol. 20, pp. 417–426, 2011.
  7. B. D. Greenshields, J. Bibbins, W. Channing, and H. Miller, “A study of traffic capacity,” in Highway research board proceedings, vol. 14, no. 1.   Washington, DC, 1935, pp. 448–477.
  8. L. Sun, Y. Pan, and W. Gu, “Data mining using regularized adaptive b-splines regression with penalization for multi-regime traffic stream models,” Journal of Advanced Transportation, vol. 48, no. 7, pp. 876–890, 2014.
  9. L. Ambühl, A. Loder, M. Menendez, and K. W. Axhausen, “Empirical macroscopic fundamental diagrams: New insights from loop detector and floating car data,” in TRB 96th Annual Meeting Compendium of Papers.   Transportation Research Board, 2017, pp. 17–03 331.
  10. Z. Liu, Y. Liu, Q. Meng, and Q. Cheng, “A tailored machine learning approach for urban transport network flow estimation,” Transportation Research Part C: Emerging Technologies, vol. 108, pp. 130–150, 2019.
  11. D. Nam, R. Lavanya, R. Jayakrishnan, I. Yang, and W. H. Jeon, “A deep learning approach for estimating traffic density using data obtained from connected and autonomous probes,” Sensors, vol. 20, no. 17, p. 4824, 2020.
  12. Y. Wang and M. Papageorgiou, “Real-time freeway traffic state estimation based on extended kalman filter: a general approach,” Transportation Research Part B: Methodological, vol. 39, no. 2, pp. 141–167, 2005.
  13. T. Seo, A. M. Bayen, T. Kusakabe, and Y. Asakura, “Traffic state estimation on highway: A comprehensive survey,” Annual reviews in control, vol. 43, pp. 128–151, 2017.
  14. T. Seo, T. Kusakabe, and Y. Asakura, “Estimation of flow and density using probe vehicles with spacing measurement equipment,” Transportation Research Part C: Emerging Technologies, vol. 53, pp. 134–150, 2015.
  15. J. Xing, W. Wu, Q. Cheng, and R. Liu, “Traffic state estimation of urban road networks by multi-source data fusion: Review and new insights,” Physica A: Statistical Mechanics and its Applications, vol. 595, p. 127079, 2022.
  16. B. Coifman, “Estimating travel times and vehicle trajectories on freeways using dual loop detectors,” Transportation Research Part A: Policy and Practice, vol. 36, no. 4, pp. 351–364, 2002.
  17. Y. Duan, Y. Lv, Y.-L. Liu, and F.-Y. Wang, “An efficient realization of deep learning for traffic data imputation,” Transportation research part C: emerging technologies, vol. 72, pp. 168–181, 2016.
  18. X. Di, R. Shi, Z. Mo, and Y. Fu, “Physics-informed deep learning for traffic state estimation: A survey and the outlook,” Algorithms, vol. 16, no. 6, p. 305, 2023.
  19. A. J. Huang and S. Agarwal, “Physics informed deep learning for traffic state estimation,” in 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC).   IEEE, 2020, pp. 1–6.
  20. Y. Li, N. Arora, and C. Osorio, “On the fundamental diagram of signal controlled urban roads,” in Proceedings of the 11th Triennial Symposium on Transportation Analysis, 2022.
  21. Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553, pp. 436–444, 2015.
  22. D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate deep network learning by exponential linear units (elus),” arXiv preprint arXiv:1511.07289, 2015.
  23. M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard et al., “{{\{{TensorFlow}}\}}: a system for {{\{{Large-Scale}}\}} machine learning,” in 12th USENIX symposium on operating systems design and implementation (OSDI 16), 2016, pp. 265–283.
  24. P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright et al., “Scipy 1.0: fundamental algorithms for scientific computing in python,” Nature methods, vol. 17, no. 3, pp. 261–272, 2020.
  25. S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on knowledge and data engineering, vol. 22, no. 10, pp. 1345–1359, 2009.
  26. M. Neun, C. Eichenberger, Y. Xin, C. Fu, N. Wiedemann, H. Martin, M. Tomko, L. Ambühl, L. Hermes, and M. Kopp, “Metropolitan segment traffic speeds from massive floating car data in 10 cities,” IEEE Transactions on Intelligent Transportation Systems, 2023.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com