Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributed Urban Freeway Traffic Optimization Considering Congestion Propagation (2106.06201v2)

Published 11 Jun 2021 in eess.SY and cs.SY

Abstract: Effective traffic optimization strategies can improve the performance of transportation networks significantly. Most exiting works develop traffic optimization strategies depending on the local traffic states of congested road segments, where the congestion propagation is neglected. This paper proposes a novel distributed traffic optimization method for urban freeways considering the potential congested road segments, which are called potential-homogeneous-area. The proposed approach is based on the intuition that the evolution of congestion may affect the neighbor segments due to the mobility of traffic flow. We identify potential-homogeneous-area by applying our proposed temporal-spatial lambda-connectedness method using historical traffic data. Further, global dynamic capacity constraint of this area is integrated with cell transmission model (CTM) in the traffic optimization problem. To reduce computational complexity and improve scalability, we propose a fully distributed algorithm to solve the problem, which is based on the partial augmented Lagrangian and dual-consensus alternating direction method of multipliers (ADMM). By this means, distributed coordination of ramp metering and variable speed limit control is achieved. We prove that the proposed algorithm converges to the optimal solution so long as the traffic optimization objective is convex. The performance of the proposed method is evaluated by macroscopic simulation using real data of Shanghai, China.

Citations (6)

Summary

We haven't generated a summary for this paper yet.