Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 95 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 236 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Efficient numerical computation of spiral spectra with exponentially-weighted preconditioners (2405.05897v1)

Published 9 May 2024 in math.NA, cs.NA, math.DS, and nlin.PS

Abstract: The stability of nonlinear waves on spatially extended domains is commonly probed by computing the spectrum of the linearization of the underlying PDE about the wave profile. It is known that convective transport, whether driven by the nonlinear pattern itself or an underlying fluid flow, can cause exponential growth of the resolvent of the linearization as a function of the domain length. In particular, sparse eigenvalue algorithms may result in inaccurate and spurious spectra in the convective regime. In this work, we focus on spiral waves, which arise in many natural processes and which exhibit convective transport. We prove that exponential weights can serve as effective, inexpensive preconditioners that result in resolvents that are uniformly bounded in the domain size and that stabilize numerical spectral computations. We also show that the optimal exponential rates can be computed reliably from a simpler asymptotic problem posed in one space dimension.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube