Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Douglas question on the Bergman and Fock spaces (2405.05412v2)

Published 8 May 2024 in math.FA

Abstract: Let $\mu$ be a positive Borel measure and $T_\mu$ be the bounded Toeplitz operator induced by $\mu$ on the Bergman or Fock space. In this paper, we mainly investigate the invertibility of the Toeplitz operator $T_\mu$ and the Douglas question on the Bergman and Fock spaces. In the Bergman-space setting, we obtain several necessary and sufficient conditions for the invertibility of $T_\mu$ in terms of the Berezin transform of $\mu$ and the reverse Carleson condition in two classical cases: (1) $\mu$ is absolutely continuous with respect to the normalized area measure on the open unit disk $\mathbb D$; (2) $\mu$ is the pull-back measure of the normalized area measure under an analytic self-mapping of $\mathbb D$. Nonetheless, we show that there exists a Carleson measure for the Bergman space such that its Berezin transform is bounded below but the corresponding Toeplitz operator is not invertible. On the Fock space, we show that $T_\mu$ is invertible if and only if $\mu$ is a reverse Carleson measure, but the invertibility of $T_\mu$ is not completely determined by the invertibility of the Berezin transform of $\mu$. These suggest that the answers to the Douglas question for Toeplitz operators induced by positive measures on the Bergman and Fock spaces are both negative in general cases.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com