Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Berezin transform and Toeplitz operators on weighted Bergman spaces induced by regular weights (1607.04394v1)

Published 15 Jul 2016 in math.FA and math.CV

Abstract: Given a regular weight $\omega$ and a positive Borel measure $\mu$ on the unit disc $\mathbb{D}$, the Toeplitz operator associated with $\mu$ is $$ \mathcal{T}\mu(f)(z)=\int{\mathbb{D}} f(\zeta)\bar{B_z\omega(\zeta)}\,d\mu(\zeta), $$ where $B\omega_{z}$ are the reproducing kernels of the weighted Bergman space $A2_\omega$. We describe bounded and compact Toeplitz operators $\mathcal{T}\mu:Ap\omega\to Aq_\omega$, $1<q,p<\infty$, in terms of Carleson measures and the Berezin transform $$ \widetilde{\mathcal{T}\mu}(z)=\frac{\langle\mathcal{T}\mu(B\omega_{z}), B\omega_{z} \rangle_{A2_\omega}}{|B_z\omega|2_{A2_\omega}}. $$ We also characterize Schatten class Toeplitz operators in terms of the Berezin transform and apply this result to study Schatten class composition operators.

Summary

We haven't generated a summary for this paper yet.