Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Kimi K2 229 tok/s Pro
2000 character limit reached

Early and elongated epochs of planetesimal dynamo generation (2405.05147v4)

Published 8 May 2024 in astro-ph.EP

Abstract: Accreting in the first few million years (Ma) of the Solar System, planetesimals record conditions in the protoplanetary disc and are the remnants of planetary formation processes. The meteorite paleomagnetic record carries key insights into the thermal history of planetesimals and their extent of differentiation. The current paradigm splits the meteorite paleomagnetic record into three magnetic field generation epochs: an early nebula field ($\lesssim$5 Ma after CAI formation), followed by thermal dynamos ($\sim$5-34 Ma after CAI formation), then a gap in dynamo generation, before the onset of core solidification and compositional dynamos. These epochs have been defined using current thermal evolution and dynamo generation models of planetesimals. Here, we demonstrate these epochs are not as distinct as previously thought based on refined thermal evolution models that include more realistic parametrisations for mantle convection, non-eutectic core solidification, and radiogenic ${60}Fe$ in the core. We find thermal dynamos can start earlier and last longer. Inclusion of appreciable ${60}Fe$ in the core brings forward the onset of dynamo generation to $\sim$1-2 Ma after CAI formation, which overlaps with the existence of the nebula field. The second epoch of dynamo generation begins prior to the onset of core solidification, suggesting this epoch is not purely compositionally driven. Planetesimal radius is the dominant control on the strength and duration of dynamo generation, and the choice of reference viscosity can widen the gap between epochs of dynamo generation from 0-200 Ma. Overall, variations in planetesimal properties lead to more variable timings of different planetesimal magnetic field generation mechanisms than previously thought. This alters the information we can glean from the meteorite paleomagnetic record about the early Solar System.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (64)
  1. Modelling the palaeo-evolution of the geodynamo. Geophysical Journal International 179, 1414–1428. URL: https://academic.oup.com/gji/article/179/3/1414/775893, doi:10.1111/J.1365-246X.2009.04361.X/3/179-3-1414-FIG012.JPEG. publisher: Oxford Academic.
  2. Lifetime of the Outer Solar System Nebula From Carbonaceous Chondrites. Journal of Geophysical Research: Planets 127, e2021JE007139. URL: https://onlinelibrary.wiley.com/doi/abs/10.1029/2021JE007139, doi:10.1029/2021JE007139. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2021JE007139.
  3. Paleomagnetic evidence for a disk substructure in the early solar system. Science Advances 7, eabj6928. URL: https://www.science.org/doi/full/10.1126/sciadv.abj6928, doi:10.1126/sciadv.abj6928. publisher: American Association for the Advancement of Science.
  4. Constraints on asteroid magnetic field evolution and the radii of meteorite parent bodies from thermal modelling. Earth and Planetary Science Letters 521, 68–78. URL: https://doi.org/10.1016/j.epsl.2019.05.046, doi:10.1016/J.EPSL.2019.05.046. publisher: Elsevier B.V.
  5. Long-lived magnetism from solidification-driven convection on the pallasite parent body. Nature 2015 517:7535 517, 472–475. URL: https://www.nature.com/articles/nature14114, doi:10.1038/nature14114. publisher: Nature Publishing Group.
  6. A unified intensity of the magnetic field in the protoplanetary disk from the Winchcombe meteorite. Meteoritics & Planetary Science n/a, 1–22. URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/maps.14079, doi:10.1111/maps.14079. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/maps.14079.
  7. Constraints on the Distances and Timescales of Solid Migration in the Early Solar System from Meteorite Magnetism. The Astrophysical Journal 896, 103. URL: https://dx.doi.org/10.3847/1538-4357/ab91ab, doi:10.3847/1538-4357/ab91ab. publisher: The American Astronomical Society.
  8. Paleomagnetic Evidence for a Partially Differentiated Ordinary Chondrite Parent Asteroid. Journal of Geophysical Research: Planets 124, 1880–1898. URL: https://onlinelibrary.wiley.com/doi/abs/10.1029/2019JE005951, doi:10.1029/2019JE005951. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2019JE005951.
  9. Paleomagnetic evidence for dynamo activity driven by inward crystallisation of a metallic asteroid. Earth and Planetary Science Letters 472, 152–163. URL: https://www.sciencedirect.com/science/article/pii/S0012821X17302923, doi:10.1016/j.epsl.2017.05.026.
  10. Evidence for Asteroid Scattering and Distal Solar System Solids From Meteorite Paleomagnetism. The Astrophysical Journal 892, 126. URL: https://dx.doi.org/10.3847/1538-4357/ab7cd4, doi:10.3847/1538-4357/ab7cd4. publisher: The American Astronomical Society.
  11. Magnetic evidence for a partially differentiated carbonaceous chondrite parent body. Proceedings of the National Academy of Sciences 108, 6386–6389. URL: https://www.pnas.org/doi/abs/10.1073/pnas.1017165108, doi:10.1073/pnas.1017165108. publisher: Proceedings of the National Academy of Sciences.
  12. Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields. Geophysical Journal International 166, 97–114. URL: https://doi.org/10.1111/j.1365-246X.2006.03009.x, doi:10.1111/j.1365-246X.2006.03009.x.
  13. Iron and Nickel Isotopes in IID and IVB Iron Meteorites: Evidence for Admixture of an SN II Component and Implications for the Initial Abundance of 60Fe. The Astrophysical Journal 917, 59. URL: https://dx.doi.org/10.3847/1538-4357/ac0add, doi:10.3847/1538-4357/ac0add. publisher: The American Astronomical Society.
  14. An early solar system magnetic field recorded in CM chondrites. Earth and Planetary Science Letters 410, 62–74. URL: https://www.sciencedirect.com/science/article/pii/S0012821X14007110, doi:10.1016/j.epsl.2014.11.019.
  15. Paleomagnetism of Rumuruti chondrites suggests a partially differentiated parent body. Earth and Planetary Science Letters 533, 116042. URL: https://www.sciencedirect.com/science/article/pii/S0012821X1930737X, doi:10.1016/j.epsl.2019.116042.
  16. Dynamo constraints on the long-term evolution of Earth’s magnetic field strength. Geophysical Journal International 228, 316–336. URL: https://doi.org/10.1093/gji/ggab342, doi:10.1093/gji/ggab342.
  17. The Thermal Evolution of Planetesimals During Accretion and Differentiation: Consequences for Dynamo Generation by Thermally-Driven Convection. Journal of Geophysical Research: Planets 126. doi:10.1029/2020JE006704. publisher: Blackwell Publishing Ltd.
  18. Chondrites as samples of differentiated planetesimals. Earth and Planetary Science Letters 305, 1–10. URL: https://www.sciencedirect.com/science/article/pii/S0012821X11001543, doi:10.1016/j.epsl.2011.03.010.
  19. Weak Magnetic Fields in the Outer Solar Nebula Recorded in CR Chondrites. Journal of Geophysical Research: Planets 125, e2019JE006260. URL: https://onlinelibrary.wiley.com/doi/abs/10.1029/2019JE006260, doi:10.1029/2019JE006260. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2019JE006260.
  20. No nebular magnetization in the Allende CV carbonaceous chondrite. Earth and Planetary Science Letters 404, 54–66. URL: https://www.sciencedirect.com/science/article/pii/S0012821X14004646, doi:10.1016/j.epsl.2014.07.014.
  21. The Fine-Scale Magnetic History of the Allende Meteorite: Implications for the Structure of the Solar Nebula. AGU Advances 2, e2021AV000486. URL: https://onlinelibrary.wiley.com/doi/full/10.1029/2021AV000486, doi:10.1029/2021AV000486. publisher: John Wiley & Sons, Ltd ISBN: 10.1029/2021.
  22. Solar nebula magnetic fields recorded in the Semarkona meteorite. Science 346, 1089–1092. URL: https://www.science.org/doi/10.1126/science.1258022, doi:10.1126/science.1258022. publisher: American Association for the Advancement of Science.
  23. New constraints on the magnetic history of the CV parent body and the solar nebula from the Kaba meteorite. Earth and Planetary Science Letters 455, 166–175. URL: https://www.sciencedirect.com/science/article/pii/S0012821X16304885, doi:10.1016/j.epsl.2016.09.008.
  24. Viscosity of magmatic liquids: A model. Earth and Planetary Science Letters 271, 123–134. URL: https://www.sciencedirect.com/science/article/pii/S0012821X08002240, doi:10.1016/j.epsl.2008.03.038.
  25. Thermal evolution model for the H chondrite asteroid-instantaneous formation versus protracted accretion. Icarus 226, 212–228. URL: http://dx.doi.org/10.1016/j.icarus.2013.05.034, doi:10.1016/J.ICARUS.2013.05.034.
  26. Rheology of the Upper Mantle and the Mantle Wedge: A View from the Experimentalists, in: Inside the Subduction Factory. American Geophysical Union. volume 138 of Geophysical Monograph Series, pp. 83–105. URL: 10.1029/GM138. doi:10.1029/138GM06.
  27. Rheology of the Upper Mantle: A Synthesis. Science 260, 771–778. URL: https://www.science.org/doi/10.1126/science.260.5109.771, doi:10.1126/science.260.5109.771. publisher: American Association for the Advancement of Science.
  28. The Early Solar System Abundance of Iron-60: New Constraints from Chondritic Silicates. The Astrophysical Journal 940, 95. URL: https://dx.doi.org/10.3847/1538-4357/ac8b85, doi:10.3847/1538-4357/ac8b85. publisher: The American Astronomical Society.
  29. Iron-60 in the Early Solar System Revisited: Insights from In Situ Isotope Analysis of Chondritic Troilite. The Astrophysical Journal 929, 107. URL: https://dx.doi.org/10.3847/1538-4357/ac5910, doi:10.3847/1538-4357/ac5910. publisher: The American Astronomical Society.
  30. Chapter 5 - Thermodynamic and Transport Properties of Silicate Melts and Magma, in: Sigurdsson, H. (Ed.), The Encyclopedia of Volcanoes (Second Edition). Academic Press, Amsterdam, pp. 113–141. URL: https://www.sciencedirect.com/science/article/pii/B9780123859389000055, doi:10.1016/B978-0-12-385938-9.00005-5.
  31. Magma ascent in planetesimals: Control by grain size. Earth and Planetary Science Letters 507, 154–165. doi:10.1016/J.EPSL.2018.11.034. arXiv: 1802.02157 Publisher: Elsevier.
  32. Meteorite evidence for partial differentiation and protracted accretion of planetesimals. Science Advances 6, eaba1303. URL: https://www.science.org/doi/10.1126/sciadv.aba1303, doi:10.1126/sciadv.aba1303. publisher: American Association for the Advancement of Science.
  33. A Long-Lived Planetesimal Dynamo Powered by Core Crystallization. Geophysical Research Letters 48, e2020GL091917. URL: https://onlinelibrary.wiley.com/doi/abs/10.1029/2020GL091917, doi:10.1029/2020GL091917. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2020GL091917.
  34. A 4,565-My-old record of the solar nebula field. Proceedings of the National Academy of Sciences 121, e2312802121. URL: https://www.pnas.org/doi/10.1073/pnas.2312802121, doi:10.1073/pnas.2312802121. publisher: Proceedings of the National Academy of Sciences.
  35. Differentiation time scales of small rocky bodies. Icarus 390, 115294. URL: https://www.sciencedirect.com/science/article/pii/S0019103522003864, doi:10.1016/j.icarus.2022.115294.
  36. The Top-Down Solidification of Iron Asteroids Driving Dynamo Evolution. Journal of Geophysical Research: Planets 124, 1331–1356. URL: https://onlinelibrary.wiley.com/doi/full/10.1029/2018JE005900, doi:10.1029/2018JE005900. publisher: John Wiley & Sons, Ltd.
  37. Fitting Thermal Evolution Models to the Chronological Record of Erg Chech 002 and Modeling the Ejection Conditions of the Meteorite. The Planetary Science Journal 4, 196. URL: https://iopscience.iop.org/article/10.3847/PSJ/acf465/meta, doi:10.3847/PSJ/acf465. publisher: IOP Publishing.
  38. A Time-Resolved Paleomagnetic Record of Main Group Pallasites: Evidence for a Large-Cored, Thin-Mantled Parent Body. Journal of Geophysical Research: Planets 126, e2021JE006900. URL: https://onlinelibrary.wiley.com/doi/full/10.1029/2021JE006900, doi:10.1029/2021JE006900. publisher: John Wiley & Sons, Ltd ISBN: 10.1029/2021.
  39. Pallasite paleomagnetism: Quiescence of a core dynamo. Earth and Planetary Science Letters 441, 103–112. doi:10.1016/J.EPSL.2016.02.037. publisher: Elsevier.
  40. Energetics of asteroid dynamos and the role of compositional convection. Geophysical Research Letters 36. URL: https://onlinelibrary.wiley.com/doi/full/10.1029/2009GL037997, doi:10.1029/2009GL037997. publisher: John Wiley & Sons, Ltd.
  41. First- and second-order Frank-Kamenetskii approximation applied to temperature-, pressure- and stress-dependent rheology. Geophysical Journal International 195, 27–46. URL: https://doi.org/10.1093/gji/ggt248, doi:10.1093/gji/ggt248.
  42. Were chondrites magnetized by the early solar wind? Earth and Planetary Science Letters 492, 222–231. URL: https://www.sciencedirect.com/science/article/pii/S0012821X1830075X, doi:10.1016/j.epsl.2018.02.013.
  43. Arrival and magnetization of carbonaceous chondrites in the asteroid belt before 4562 million years ago. Communications Earth & Environment 1, 1–7. URL: https://www.nature.com/articles/s43247-020-00055-w, doi:10.1038/s43247-020-00055-w. publisher: Nature Publishing Group.
  44. A unified chronology of dust formation in the early solar system. Icarus 394, 115427. URL: https://www.sciencedirect.com/science/article/pii/S0019103523000040, doi:10.1016/j.icarus.2023.115427.
  45. The Fe snow regime in Ganymede’s core: A deep-seated dynamo below a stable snow zone. Journal of Geophysical Research: Planets 120, 1095–1118. URL: https://onlinelibrary.wiley.com/doi/full/10.1002/2014JE004781, doi:10.1002/2014JE004781. publisher: John Wiley & Sons, Ltd.
  46. Top-down freezing in a Fe–FeS core and Ganymede’s present-day magnetic field. Icarus 307, 172–196. URL: https://www.sciencedirect.com/science/article/pii/S0019103517307029, doi:10.1016/j.icarus.2018.02.021.
  47. A refined, versatile model for planetesimal thermal evolution and dynamo generation. URL: https://github.com/Hannah-RS/planetesimal-magnetic-history, doi:10.5281/zenodo.11147998.
  48. Unlocking planetesimal magnetic field histories: a refined, versatile model for thermal evolution and dynamo generation.
  49. Core solidification and dynamo evolution in a mantle-stripped planetesimal. Journal of Geophysical Research: Planets 121, 2–20. URL: https://onlinelibrary.wiley.com/doi/full/10.1002/2015JE004843, doi:10.1002/2015JE004843. publisher: John Wiley & Sons, Ltd.
  50. The effect of large melt fraction on the deformation behavior of peridotite. Earth and Planetary Science Letters 246, 177–187. doi:10.1016/J.EPSL.2006.04.027.
  51. Long-lived magnetism on chondrite parent bodies. Earth and Planetary Science Letters 475, 106–118. URL: https://www.sciencedirect.com/science/article/pii/S0012821X17304193, doi:10.1016/j.epsl.2017.07.035.
  52. Thermal evolution of early solar system planetesimals and the possibility of sustained dynamos. Physics of the Earth and Planetary Interiors URL: http://dx.doi.org/10.1016/j.pepi.2012.10.006, doi:10.1016/j.pepi.2012.10.006.
  53. Planetary magnetic fields. Earth and Planetary Science Letters 208, 1–11. URL: https://www.sciencedirect.com/science/article/pii/S0012821X02011263, doi:10.1016/S0012-821X(02)01126-3.
  54. Birth and Decline of Magma Oceans in Planetesimals: 2. Structure and Thermal History of Early Accreted Small Planetary Bodies. Journal of Geophysical Research: Planets 127, e2021JE007020. URL: https://onlinelibrary.wiley.com/doi/abs/10.1029/2021JE007020, doi:10.1029/2021JE007020. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2021JE007020.
  55. The aqueous alteration of CM chondrites, a review. Geochimica et Cosmochimica Acta 299, 219–256. URL: https://www.sciencedirect.com/science/article/pii/S0016703721000363, doi:10.1016/j.gca.2021.01.014.
  56. Abundance, distribution, and origin of 60Fe in the solar protoplanetary disk. Earth and Planetary Science Letters 359-360, 248–263. URL: https://www.sciencedirect.com/science/article/pii/S0012821X12005705, doi:10.1016/j.epsl.2012.10.011.
  57. Evidence for a Dynamo in the Main Group Pallasite Parent Body. Science 338, 939–942. URL: https://www.science.org/doi/full/10.1126/science.1223932, doi:10.1126/science.1223932. publisher: American Association for the Advancement of Science.
  58. Magnetization of CV Meteorites in the Absence of a Parent Body Core Dynamo, in: 48th Annual Lunar and Planetary Science Conference, p. 2850. URL: https://ui.adsabs.harvard.edu/abs/2017LPI....48.2850T.
  59. Lifetime of the solar nebula constrained by meteorite paleomagnetism. Science 355, 623–627. URL: https://www.science.org/doi/full/10.1126/science.aaf5043, doi:10.1126/science.aaf5043. publisher: American Association for the Advancement of Science.
  60. History of the solar nebula from meteorite paleomagnetism. Science Advances 7, eaba5967. URL: https://www.science.org/doi/full/10.1126/sciadv.aba5967, doi:10.1126/sciadv.aba5967. publisher: American Association for the Advancement of Science.
  61. Differentiated Planetesimals and the Parent Bodies of Chondrites. Annual Review of Earth and Planetary Sciences 41, 529–560. URL: https://doi.org/10.1146/annurev-earth-040610-133520, doi:10.1146/annurev-earth-040610-133520. _eprint: https://doi.org/10.1146/annurev-earth-040610-133520.
  62. The lunar dynamo. Science 346. URL: https://www.science.org/doi/abs/10.1126/science.1246753, doi:10.1126/SCIENCE.1246753/SUPPL_FILE/WEISS.SM.PDF. publisher: American Association for the Advancement of Science.
  63. A nonmagnetic differentiated early planetary body. Earth and Planetary Science Letters 468, 119–132. URL: https://www.sciencedirect.com/science/article/pii/S0012821X17301620, doi:10.1016/j.epsl.2017.03.026.
  64. Bottom-up versus top-down solidification of the cores of small solar system bodies: Constraints on paradoxical cores. Earth and Planetary Science Letters 284, 564–569. doi:10.1016/J.EPSL.2009.05.019. publisher: Elsevier.
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.