Kirkwood-Dirac representations beyond quantum states (and their relation to noncontextuality) (2405.04573v1)
Abstract: Kirkwood-Dirac representations of quantum states are increasingly finding use in many areas within quantum theory. Usually, representations of this sort are only applied to provide a representation of quantum states (as complex functions over some set). We show how standard Kirkwood-Dirac representations can be extended to a fully compositional representation of all of quantum theory (including channels, measurements and so on), and prove that this extension satisfies the essential features of functoriality (namely, that the representation commutes with composition of channels), linearity, and quasistochasticity. Interestingly, the representation of a POVM element is uniquely picked out to be the collection of weak values for it relative to the bases defining the representation. We then prove that if one can find any Kirkwood-Dirac representation that is everywhere real and nonnegative for a given experimental scenario or fragment of quantum theory, then the scenario or fragment is consistent with the principle of generalized noncontextuality, a key notion of classicality in quantum foundations. We also show that the converse does not hold: even if one verifies that all Kirkwood-Dirac representations (as defined herein) of an experiment require negativity or imaginarity, one cannot generally conclude that the experiment witnesses contextuality.
- C. Ferrie and J. Emerson, Frame representations of quantum mechanics and the necessity of negativity in quasi-probability representations, J. Phys. A 41, 352001 (2008).
- R. W. Spekkens, Negativity and Contextuality are Equivalent Notions of Nonclassicality, Phys. Rev. Lett. 101, 020401 (2008).
- E. P. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev. 40, 749 (1932).
- D. Gross, Hudson’s theorem for finite-dimensional quantum systems, J. Math. Phys. 47, 122107 (2006).
- J. G. Kirkwood, Quantum statistics of almost classical assemblies, Phys. Rev. 44, 31 (1933).
- P. A. M. Dirac, On the analogy between classical and quantum mechanics, Rev. Mod. Phys. 17, 195 (1945).
- J. H. Jenne and D. R. M. Arvidsson-Shukur, Unbounded and lossless compression of multiparameter quantum information, Phys. Rev. A 106, 042404 (2022).
- N. Yunger Halpern, Jarzynski-like equality for the out-of-time-ordered correlator, Phys. Rev. A 95, 012120 (2017).
- S. Gherardini and G. D. Chiara, Quasiprobabilities in quantum thermodynamics and many-body systems: A tutorial, arXiv: 2403.17138 [quant-ph] (2024).
- A. Levy and M. Lostaglio, Quasiprobability distribution for heat fluctuations in the quantum regime, PRX Quantum 1, 010309 (2020).
- R. Wagner and E. F. Galvão, Simple proof that anomalous weak values require coherence, Phys. Rev. A 108, L040202 (2023).
- A. Budiyono and H. K. Dipojono, Quantifying quantum coherence via Kirkwood-Dirac quasiprobability, Phys. Rev. A 107, 022408 (2023).
- M. Ban, On sequential measurements with indefinite causal order, Physics Letters A 403, 127383 (2021).
- D. R. M. Arvidsson-Shukur, J. C. Drori, and N. Y. Halpern, Conditions tighter than noncommutation needed for nonclassicality, J. Phys. A 54, 284001 (2021).
- N. Y. Halpern, B. Swingle, and J. Dressel, Quasiprobability behind the out-of-time-ordered correlator, Phys. Rev. A 97, 042105 (2018).
- J. R. González Alonso, N. Yunger Halpern, and J. Dressel, Out-of-time-ordered-correlator quasiprobabilities robustly witness scrambling, Phys. Rev. Lett. 122, 040404 (2019).
- S. Mac Lane, Categories for the working mathematician, Vol. 5 (Springer Science & Business Media, 2013).
- C. Ferrie and J. Emerson, Framed Hilbert space: hanging the quasi-probability pictures of quantum theory, New Journal of Physics 11, 063040 (2009).
- C. Ferrie, Quasi-probability representations of quantum theory with applications to quantum information science, Reports on Progress in Physics 74, 116001 (2011).
- O. Christensen, An Introduction to Frames and Riesz Bases, Applied and Numerical Harmonic Analysis (Springer International Publishing, 2016).
- Y. Aharonov, D. Z. Albert, and L. Vaidman, How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100, Phys. Rev. Lett. 60, 1351 (1988).
- B. Tamir and E. Cohen, Introduction to weak measurements and weak values, Quanta 2, 7 (2013).
- R. W. Spekkens, The ontological identity of empirical indiscernibles: Leibniz’s methodological principle and its significance in the work of Einstein, arXiv:1909.04628 [physics.hist-ph] (2019).
- D. Schmid and R. W. Spekkens, Contextual advantage for state discrimination, Phys. Rev. X 8, 011015 (2018).
- M. F. Pusey, Anomalous Weak Values Are Proofs of Contextuality, Phys. Rev. Lett. 113, 200401 (2014).
- D. Saha, P. Horodecki, and M. Pawłowski, State independent contextuality advances one-way communication, New J. Phys. 21, 093057 (2019).
- M. Lostaglio and G. Senno, Contextual advantage for state-dependent cloning, Quantum 4, 258 (2020).
- R. Raussendorf, Contextuality in measurement-based quantum computation, Phys. Rev. A 88, 022322 (2013).
- R. Wagner, A. Camillini, and E. F. Galvão, Coherence and contextuality in a Mach-Zehnder interferometer, Quantum 8, 1240 (2024b).
- S. A. Yadavalli and R. Kunjwal, Contextuality in entanglement-assisted one-shot classical communication, Quantum 6, 839 (2022).
- D. Saha and A. Chaturvedi, Preparation contextuality as an essential feature underlying quantum communication advantage, Phys. Rev. A 100, 022108 (2019).
- M. Lostaglio, Certifying Quantum Signatures in Thermodynamics and Metrology via Contextuality of Quantum Linear Response, Phys. Rev. Lett. 125, 230603 (2020).
- R. Kunjwal and R. W. Spekkens, From the Kochen-Specker Theorem to Noncontextuality Inequalities without Assuming Determinism, Phys. Rev. Lett. 115, 110403 (2015).
- R. Kunjwal, Contextuality beyond the Kochen-Specker theorem, arXiv:1612.07250 [quant-ph] (2016).
- D. Schmid, R. W. Spekkens, and E. Wolfe, All the noncontextuality inequalities for arbitrary prepare-and-measure experiments with respect to any fixed set of operational equivalences, Phys. Rev. A 97, 062103 (2018).
- M. F. Pusey, L. del Rio, and B. Meyer, Contextuality without access to a tomographically complete set, arXiv:1904.08699 [quant-ph] (2019).
- D. Schmid, J. H. Selby, and R. W. Spekkens, Addressing some common objections to generalized noncontextuality, Phys. Rev. A 109, 022228 (2024b).
- F. Shahandeh, Quantum computational advantage implies contextuality, arXiv:2112.00024 [quant-ph] (2021).
- S. Mukherjee, S. Naonit, and A. K. Pan, Discriminating three mirror-symmetric states with a restricted contextual advantage, Phys. Rev. A 106, 012216 (2022).
- J. Shin, D. Ha, and Y. Kwon, Quantum Contextual Advantage Depending on Nonzero Prior Probabilities in State Discrimination of Mixed Qubit States, Entropy 23, 1583 (2021).
- V. J. Wright and M. Farkas, Invertible Map between Bell Nonlocal and Contextuality Scenarios, Phys. Rev. Lett. 131, 220202 (2023).
- D. Schmid, J. H. Selby, and R. W. Spekkens, Unscrambling the omelette of causation and inference: The framework of causal-inferential theories, arXiv:2009.03297 [quant-ph] (2021b).
- R. Kunjwal and R. W. Spekkens, From statistical proofs of the Kochen-Specker theorem to noise-robust noncontextuality inequalities, Phys. Rev. A 97, 052110 (2018).
- R. Kunjwal, Beyond the Cabello-Severini-Winter framework: Making sense of contextuality without sharpness of measurements, Quantum 3, 184 (2019).
- R. Kunjwal, Hypergraph framework for irreducible noncontextuality inequalities from logical proofs of the Kochen-Specker theorem, Quantum 4, 219 (2020).
- J. Xu, Kirkwood-dirac classical pure states, Physics Letters A 510, 129529 (2024).
- C. Langrenez, D. R. M. Arvidsson-Shukur, and S. D. Bièvre, Characterizing the geometry of the Kirkwood-Dirac positive states, arXiv:2306.00086 (2023).
- Y. Quek, E. Kaur, and M. M. Wilde, Multivariate trace estimation in constant quantum depth, Quantum 8, 1220 (2024).
- K. Husimi, Some Formal Properties of the Density Matrix, Proceedings of the Physico-Mathematical Society of Japan. 3rd Series 22, 264 (1940).
- R. J. Glauber, Coherent and incoherent states of the radiation field, Phys. Rev. 131, 2766 (1963).
- E. C. G. Sudarshan, Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams, Phys. Rev. Lett. 10, 277 (1963).
- G. Chiribella, G. M. D’Ariano, and P. Perinotti, Probabilistic theories with purification, Phys. Rev. A 81, 062348 (2010).
- R. W. Spekkens, Quasi-Quantization: Classical Statistical Theories with an Epistemic Restriction, in Quantum Theory: Informational Foundations and Foils, edited by G. Chiribella and R. W. Spekkens (Springer Netherlands, Dordrecht, 2016) pp. 83–135.
- L. Hardy, Quantum Theory From Five Reasonable Axioms, arXiv:quant-ph/0101012 (2001).
- J. Barrett, Information processing in generalized probabilistic theories, Phys. Rev. A 75, 032304 (2007).
- L. M. Johansen, Quantum theory of successive projective measurements, Phys. Rev. A 76, 012119 (2007).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.