Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 10 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Top-down and bottom-up: Studying the SMEFT beyond leading order in $1/Λ^2$ (2405.04570v2)

Published 7 May 2024 in hep-ph

Abstract: In order to assess the relevance of higher order terms in the Standard Model Effective Field Theory (SMEFT) expansion we consider four new physics models and their impact on the Drell Yan cross section. Of these four, one scalar model has no effect on Drell Yan, a model of fermions while appearing to generate a momentum expansion actually belongs to the vacuum expectation value expansion and so has a nominal effect on the process. The remaining two, a leptoquark and a Z' model exhibit a momentum expansion. After matching these models to dimension-ten we study how the inclusion of dimension-eight and dimension-ten operators in hypothetical effective field theory fits to the full ultraviolet models impacts fits. We do this both in the top-down approach, and in a very limited approximation to the bottom up approach of the SMEFT to infer the impact of a fully general fit to the SMEFT. We find that for the more weakly coupled models a strictly dimension-six fit is sufficient. In contrast when stronger interactions or lighter masses are considered the inclusion of dimension-eight operators becomes necessary. However, their Wilson coefficients perform the role of nuisance parameters with best fit values which can differ statistically from the theory prediction. In the most strongly coupled theories considered (which are already ruled out by data) the inclusion of dimension-ten operators allows for the measurement of dimension-eight operator coefficients consistent with theory predictions and the dimension-ten operator coefficients then behave as nuisance parameters. We also study the impact of the inclusion of partial next order results, such as dimension-six squared contributions, and find that in some cases they improve the convergence of the series while in others they hinder it.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (61)
  1. S. Weinberg, Phenomenological Lagrangians, Physica A 96(1-2), 327 (1979), 10.1016/0378-4371(79)90223-1.
  2. Anomalous neutral gauge boson interactions and simplified models, Phys. Rev. D 97(11), 115040 (2018), 10.1103/PhysRevD.97.115040, 1710.07530.
  3. G. J. Gounaris, J. Layssac and F. M. Renard, Signatures of the anomalous Zγsubscript𝑍𝛾Z_{\gamma}italic_Z start_POSTSUBSCRIPT italic_γ end_POSTSUBSCRIPT and Z⁢Z𝑍𝑍ZZitalic_Z italic_Z production at the lepton and hadron colliders, Phys. Rev. D 61, 073013 (2000), 10.1103/PhysRevD.61.073013, hep-ph/9910395.
  4. C. Degrande, A basis of dimension-eight operators for anomalous neutral triple gauge boson interactions, JHEP 02, 101 (2014), 10.1007/JHEP02(2014)101, 1308.6323.
  5. J. Ellis, H.-J. He and R.-Q. Xiao, Probing new physics in dimension-8 neutral gauge couplings at e+e? colliders, Sci. China Phys. Mech. Astron. 64(2), 221062 (2021), 10.1007/s11433-020-1617-3, 2008.04298.
  6. Classifying the bosonic quartic couplings, Phys. Rev. D 93(9), 093013 (2016), 10.1103/PhysRevD.93.093013, 1604.03555.
  7. Probing Neutral Triple Gauge Couplings via 𝐙⁢𝛄⁢(ℓ+⁢ℓ−⁢𝛄)𝐙𝛄superscriptbold-ℓsuperscriptbold-ℓ𝛄\boldsymbol{Z\gamma\,(\ell^{+}\ell^{-}\gamma)}bold_italic_Z bold_italic_γ bold_( bold_ℓ start_POSTSUPERSCRIPT bold_+ end_POSTSUPERSCRIPT bold_ℓ start_POSTSUPERSCRIPT bold_- end_POSTSUPERSCRIPT bold_italic_γ bold_) Production at 𝐞+⁢𝐞−superscript𝐞superscript𝐞\boldsymbol{e^{+}e^{-}}bold_italic_e start_POSTSUPERSCRIPT bold_+ end_POSTSUPERSCRIPT bold_italic_e start_POSTSUPERSCRIPT bold_- end_POSTSUPERSCRIPT Colliders (2024), 2404.15937.
  8. C. Zhang, SMEFTs living on the edge: determining the UV theories from positivity and extremality (2021), 2112.11665.
  9. T. Corbett, The Feynman rules for the SMEFT in the background field gauge, JHEP 03, 001 (2021), 10.1007/JHEP03(2021)001, 2010.15852.
  10. A. Helset, A. Martin and M. Trott, The Geometric Standard Model Effective Field Theory, JHEP 03, 163 (2020), 10.1007/JHEP03(2020)163, 2001.01453.
  11. C. W. Murphy, Dimension-8 operators in the Standard Model Eective Field Theory, JHEP 10, 174 (2020), 10.1007/JHEP10(2020)174, 2005.00059.
  12. Complete set of dimension-eight operators in the standard model effective field theory, Phys. Rev. D 104(1), 015026 (2021), 10.1103/PhysRevD.104.015026, 2005.00008.
  13. Dimension-eight Operator Basis for Universal Standard Model Effective Field Theory (2024), 2404.03720.
  14. On the impact of dimension-eight SMEFT operators on Higgs measurements, JHEP 02, 123 (2019), 10.1007/JHEP02(2019)123, 1808.00442.
  15. T. Corbett, The one-loop tadpole in the geoSMEFT, SciPost Phys. 11, 097 (2021), 2106.10284.
  16. R. Boughezal, E. Mereghetti and F. Petriello, Dilepton production in the SMEFT at O(1/ΛΛ\Lambdaroman_Λ4), Phys. Rev. D 104(9), 095022 (2021), 10.1103/PhysRevD.104.095022, 2106.05337.
  17. T. Corbett, A. Martin and M. Trott, Consistent higher order σ⁢(𝒢⁢𝒢→h)𝜎→𝒢𝒢ℎ\sigma\left(\mathcal{GG}\to h\right)italic_σ ( caligraphic_G caligraphic_G → italic_h ), Γ⁢(h→𝒢⁢𝒢)Γ→ℎ𝒢𝒢\Gamma\left(h\to\mathcal{GG}\right)roman_Γ ( italic_h → caligraphic_G caligraphic_G ) and Γ⁢(h→γ⁢γ)Γ→ℎ𝛾𝛾\Gamma(h\to\gamma\gamma)roman_Γ ( italic_h → italic_γ italic_γ ) in geoSMEFT, JHEP 12, 147 (2021), 10.1007/JHEP12(2021)147, 2107.07470.
  18. Novel angular dependence in Drell-Yan lepton production via dimension-8 operators, Phys. Lett. B 809, 135703 (2020), 10.1016/j.physletb.2020.135703, 2003.11615.
  19. R. Boughezal, Y. Huang and F. Petriello, Exploring the SMEFT at dimension eight with Drell-Yan transverse momentum measurements, Phys. Rev. D 106(3), 036020 (2022), 10.1103/PhysRevD.106.036020, 2207.01703.
  20. T. Kim and A. Martin, Monolepton production in SMEFT to 𝒪𝒪\mathcal{O}caligraphic_O(1/ΛΛ\Lambdaroman_Λ4) and beyond, JHEP 09, 124 (2022), 10.1007/JHEP09(2022)124, 2203.11976.
  21. Drell-Yan tails beyond the Standard Model, JHEP 03, 064 (2023), 10.1007/JHEP03(2023)064, 2207.10714.
  22. S. Dawson, S. Homiller and M. Sullivan, Impact of dimension-eight SMEFT contributions: A case study, Phys. Rev. D 104(11), 115013 (2021), 10.1103/PhysRevD.104.115013, 2110.06929.
  23. C. Degrande and H.-L. Li, Impact of Dimension-8 SMEFT operators on Diboson Productions (2023), 2303.10493.
  24. EWPD in the SMEFT to dimension eight, JHEP 06, 076 (2021), 10.1007/JHEP06(2021)076, 2102.02819.
  25. Impact of dimension-eight SMEFT operators in the electroweak precision observables and triple gauge couplings analysis in universal SMEFT, Phys. Rev. D 107(11), 115013 (2023), 10.1103/PhysRevD.107.115013, 2304.03305.
  26. A. Martin and M. Trott, More accurate σ⁢(𝒢⁢𝒢→h)𝜎→𝒢𝒢ℎ\sigma(\mathcal{G}\,\mathcal{G}\rightarrow h)italic_σ ( caligraphic_G caligraphic_G → italic_h ), Γ⁢(h→𝒢⁢𝒢,𝒜⁢𝒜,Ψ¯⁢Ψ)Γ→ℎ𝒢𝒢𝒜𝒜¯ΨΨ\Gamma(h\rightarrow\mathcal{G}\,\mathcal{G},\mathcal{A}\mathcal{A},\bar{\Psi}{% \Psi})roman_Γ ( italic_h → caligraphic_G caligraphic_G , caligraphic_A caligraphic_A , over¯ start_ARG roman_Ψ end_ARG roman_Ψ ) and Higgs width results via the geoSMEFT (2023), 2305.05879.
  27. R. Boughezal, Y. Huang and F. Petriello, Impact of high invariant-mass Drell-Yan forward-backward asymmetry measurements on SMEFT fits, Phys. Rev. D 108(7), 076008 (2023), 10.1103/PhysRevD.108.076008, 2303.08257.
  28. A. Martin, A case study of SMEFT 𝒪⁢(1/Λ4)𝒪1superscriptΛ4\mathcal{O}(1/\Lambda^{4})caligraphic_O ( 1 / roman_Λ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT ) effects in diboson processes: p⁢p→W±⁢(ℓ±⁢ν)⁢γ→𝑝𝑝superscript𝑊plus-or-minussuperscriptℓplus-or-minus𝜈𝛾pp\to W^{\pm}(\ell^{\pm}\nu)\gammaitalic_p italic_p → italic_W start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT ( roman_ℓ start_POSTSUPERSCRIPT ± end_POSTSUPERSCRIPT italic_ν ) italic_γ (2023), 2312.09867.
  29. T. Corbett and A. Martin, Higgs associated production with a vector decaying to two fermions in the geoSMEFT (2023), 2306.00053.
  30. J. Ellis, K. Mimasu and F. Zampedri, Dimension-8 SMEFT analysis of minimal scalar field extensions of the Standard Model, JHEP 10, 051 (2023), 10.1007/JHEP10(2023)051, 2304.06663.
  31. A. Martin and M. Trott, g⁢g⁢h𝑔𝑔ℎgghitalic_g italic_g italic_h variations, Phys. Rev. D 105(7), 076004 (2022), 10.1103/PhysRevD.105.076004, 2109.05595.
  32. J. Talbert and M. Trott, Dirac masses and mixings in the (geo)SM(EFT) and beyond, JHEP 11, 009 (2021), 10.1007/JHEP11(2021)009, 2107.03951.
  33. M. Trott, Methodology for theory uncertainties in the standard model effective field theory, Phys. Rev. D 104(9), 095023 (2021), 10.1103/PhysRevD.104.095023, 2106.13794.
  34. S. Dawson, M. Forslund and M. Schnubel, SMEFT Matching to Z′superscript𝑍′Z^{\prime}italic_Z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT Models at Dimension-8 (2024), 2404.01375.
  35. I. Brivio, Y. Jiang and M. Trott, The SMEFTsim package, theory and tools, JHEP 12, 070 (2017), 10.1007/JHEP12(2017)070, 1709.06492.
  36. Minimal flavor violation: An Effective field theory approach, Nucl. Phys. B 645, 155 (2002), 10.1016/S0550-3213(02)00836-2, hep-ph/0207036.
  37. J. D. Wells and Z. Zhang, Effective theories of universal theories, JHEP 01, 123 (2016), 10.1007/JHEP01(2016)123, 1510.08462.
  38. Energy helps accuracy: electroweak precision tests at hadron colliders, Phys. Lett. B 772, 210 (2017), 10.1016/j.physletb.2017.06.043, 1609.08157.
  39. Pushing Higgs Effective Theory to its Limits, Phys. Rev. D 93(7), 075014 (2016), 10.1103/PhysRevD.93.075014, 1510.03443.
  40. A Proof of Concept for Matchete: An Automated Tool for Matching Effective Theories (2022), 2212.04510.
  41. SIMUnet: an open-source tool for simultaneous global fits of EFT Wilson coefficients and PDFs (2024), 2402.03308.
  42. M. Madigan, Can PDFs absorb new physics?, PoS EPS-HEP2023, 479 (2024), 10.22323/1.449.0479.
  43. Hide and seek: how PDFs can conceal new physics, JHEP 11, 090 (2023), 10.1007/JHEP11(2023)090, 2307.10370.
  44. Can New Physics hide inside the proton?, Phys. Rev. Lett. 123(13), 132001 (2019), 10.1103/PhysRevLett.123.132001, 1905.05215.
  45. Parton distributions in the SMEFT from high-energy Drell-Yan tails, JHEP 07, 122 (2021), 10.1007/JHEP07(2021)122, 2104.02723.
  46. FeynRules 2.0 - A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185, 2250 (2014), 10.1016/j.cpc.2014.04.012, 1310.1921.
  47. T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140, 418 (2001), 10.1016/S0010-4655(01)00290-9, hep-ph/0012260.
  48. T. Hahn and M. Perez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118, 153 (1999), 10.1016/S0010-4655(98)00173-8, hep-ph/9807565.
  49. A. M. Sirunyan et al., Search for resonant and nonresonant new phenomena in high-mass dilepton final states at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV, JHEP 07, 208 (2021), 10.1007/JHEP07(2021)208, 2103.02708.
  50. Effective description of general extensions of the Standard Model: the complete tree-level dictionary, JHEP 03, 109 (2018), 10.1007/JHEP03(2018)109, 1711.10391.
  51. Effective Field Theory of the Two Higgs Doublet Model (2023), 2304.09884.
  52. Exact SMEFT formulation and expansion to 𝒪⁢(v4/Λ4)𝒪superscript𝑣4superscriptΛ4\mathcal{O}(v^{4}/\Lambda^{4})caligraphic_O ( italic_v start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT / roman_Λ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT ), JHEP 11, 087 (2020), 10.1007/JHEP11(2020)087, 2007.00565.
  53. Role of dimension-eight operators in an EFT for the 2HDM, Phys. Rev. D 106(5), 055012 (2022), 10.1103/PhysRevD.106.055012, 2205.01561.
  54. B. Henning, X. Lu and H. Murayama, How to use the Standard Model effective field theory, JHEP 01, 023 (2016), 10.1007/JHEP01(2016)023, 1412.1837.
  55. Robust Determination of the Higgs Couplings: Power to the Data, Phys. Rev. D 87, 015022 (2013), 10.1103/PhysRevD.87.015022, 1211.4580.
  56. The Higgs Legacy of the LHC Run I, JHEP 08, 156 (2015), 10.1007/JHEP08(2015)156, 1505.05516.
  57. A. Biekötter, T. Corbett and T. Plehn, The Gauge-Higgs Legacy of the LHC Run II, SciPost Phys. 6(6), 064 (2019), 10.21468/SciPostPhys.6.6.064, 1812.07587.
  58. J. Campbell and T. Neumann, Precision Phenomenology with MCFM, JHEP 12, 034 (2019), 10.1007/JHEP12(2019)034, 1909.09117.
  59. Standard model EFT and the Drell-Yan process at high energy, Phys. Rev. D 99(3), 035044 (2019), 10.1103/PhysRevD.99.035044, 1811.12260.
  60. NLO QCD corrections to SM-EFT dilepton and electroweak Higgs boson production, matched to parton shower in POWHEG, JHEP 08, 205 (2018), 10.1007/JHEP08(2018)205, 1804.07407.
  61. S. Rappoccio, The experimental status of direct searches for exotic physics beyond the standard model at the Large Hadron Collider, Rev. Phys. 4, 100027 (2019), 10.1016/j.revip.2018.100027, 1810.10579.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 posts and received 2 likes.