Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 98 tok/s Pro
GPT OSS 120B 424 tok/s Pro
Kimi K2 164 tok/s Pro
2000 character limit reached

Multi-Mode Array Filtering of Resonance Fluorescence (2405.03900v4)

Published 6 May 2024 in quant-ph

Abstract: We present a novel frequency-filtering method for measuring and calculating frequency-filtered photon-correlations. This novel method is a cavity-based system we call the multi-mode array filter, which consists of an array of tunable single-mode cavities that are equally spaced in frequency. By introducing a mode-dependent phase modulation, we produce a near rectangular frequency response, allowing us to increase the filter bandwidth -- and thus the temporal response -- without sacrificing frequency isolation. We model the frequency filtering using a cascaded quantum open systems approach which completely neglects any back-action of the filter onto the source system. This allows us to derive a closed set of operator moment equations for source and filter system operators, thus providing an extremely efficient method to calculate frequency-filtered first- and second-order correlation functions. We demonstrate this novel filtering method by applying it to a resonantly driven two-level atom. We present examples of frequency-filtered power spectra to demonstrate the improved frequency isolation of the multi-mode array filter over the single-mode filter. We then present results for the single-mode and multi-mode-array filtered second-order auto- and cross-correlation functions. These are compared against expressions derived in the secular approximation. The improved frequency isolation of the multi-mode array filter allows us to investigate new regimes of frequency-filtered photon correlations, such as two-photon leapfrog processes, and the effect of vanishing bandwidth on filtered auto-correlation functions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. B. R. Mollow, Power spectrum of light scattered by two-level systems, Phys. Rev. 188, 1969 (1969).
  2. R. J. Glauber, The quantum theory of optical coherence, Phys. Rev. 130, 2529 (1963a).
  3. R. J. Glauber, Photon correlations, Phys. Rev. Lett. 10, 84 (1963b).
  4. H. J. Carmichael and D. F. Walls, Proposal for the measurement of the resonant Stark effect by photon correlation techniques, J. Phys. B: At. Mol. Phys. 9, L43 (1976a).
  5. H. J. Carmichael and D. F. Walls, A quantum-mechanical master equation treatment of the dynamical Stark effect, J. Phys. B: At. Mol. Phys. 9, 1199 (1976b).
  6. D. F. Walls, Evidence for the quantum nature of light, Nature 280, 451 (1979).
  7. H. J. Kimble, M. Dagenais, and L. Mandel, Photon antibunching in resonance fluorescence, Phys. Rev. Lett. 39, 691 (1977).
  8. P. A. Apanasevich and S. J. Kilin, Light-induced correlations in spontaneous emission, Phys. Lett. A 62, 83 (1977).
  9. P. A. Apanasevich and S. J. Kilin, Multitime correlation in scattering and fluorescence, J. Appl. Spectrosc. 29, 931 (1978).
  10. P. A. Apanasevich and S. J. Kilin, Photon bunching and antibunching in resonance fluorescence, J. Phys. B: At. Mol. Phys. 12, L83 (1979).
  11. H. F. Arnoldus and G. Nienhuis, Photon correlations between the lines in the spectrum of resonance fluorescence, J. Phys. B: At. Mol. Phys. 17, 963 (1984).
  12. J. D. Cresser, Intensity correlations of frequency-filtered light fields, J. Phys. B: At. Mol. Phys. 20, 4915 (1987).
  13. J. H. Eberly and K. Wódkiewicz, The time-dependent physical spectrum of light, J. Opt. Soc. Am. 67, 1252 (1977).
  14. L. Knöll, G. Weber, and T. Schafer, Theory of time-resolved correlation spectroscopy and its application to resonance fluorescence radiation, J. Phys. B: At. Mol. Phys. 17, 4861 (1984).
  15. L. Knöll, W. Vogel, and D.-G. Welsch, Spectral properties of light in quantum optics, Phys. Rev. A 42, 503 (1990).
  16. G. Nienhuis, Spectral correlations in resonance fluorescence, Phys. Rev. A 47, 510 (1993a).
  17. G. Nienhuis, Spectral correlations within the fluorescence triplet, Europhys. Lett. 21, 285 (1993b).
  18. K. Joosten and G. Nienhuis, Influence of spectral filtering on the quantum nature of light, J. Opt. B: Quantum Semiclassical Opt. 2, 158 (2000).
  19. J. D. Cresser, Theory of the spectrum of the quantised light field, Phys. Rep. 94, 47 (1983).
  20. E. del Valle, Distilling one, two and entangled pairs of photons from a quantum dot with cavity QED effects and spectral filtering, New J. Phys. 15, 025019 (2013).
  21. A. González-Tudela, E. del Valle, and F. P. Laussy, Optimization of photon correlations by frequency filtering, Phys. Rev. A 91, 043807 (2015).
  22. F. P. Laussy, A new way to correlate photons, Nat. Mater. 16, 398 (2017).
  23. V. N. Shatokhin and S. J. Kilin, Correlation functions in resonance fluorescence with spectral resolution: Signal-processing approach, Phys. Rev. A 94, 033835 (2016).
  24. D. I. H. Holdaway, V. Notararigo, and A. Olaya-Castro, Perturbation approach for computing frequency- and time-resolved photon correlation functions, Phys. Rev. A 98, 063828 (2018).
  25. M. Holland, Unraveling quantum dissipation in the frequency domain, Phys. Rev. Lett. 81, 5117 (1998).
  26. J. C. L. Carreño, E. del Valle, and F. P. Laussy, Frequency-resolved Monte Carlo, Sci. Rep. 8, 6975 (2018).
  27. G. Bel and F. L. H. Brown, Theory for wavelength-resolved photon emission statistics in single-molecule fluorescence spectroscopy, Phys. Rev. Lett. 102, 018303 (2009).
  28. K. Kamide, S. Iwamoto, and Y. Arakawa, Eigenvalue decomposition method for photon statistics of frequency-filtered fields and its application to quantum dot emitters, Phys. Rev. A 92, 033833 (2015).
  29. M. J. Clauser, Relaxation effects in spectra: Eigenvalue treatment of superoperators, Phys. Rev. B 3, 3748 (1971).
  30. C. W. Gardiner, Driving a quantum system with the output field from another driven quantum system, Phys. Rev. Lett. 70, 2269 (1993).
  31. H. J. Carmichael, Quantum trajectory theory for cascaded open systems, Phys. Rev. Lett. 70, 2273 (1993).
  32. F. Bloch, Nuclear induction, Phys. Rev. 70, 460 (1946).
  33. N. Wiener, Generalized harmonic analysis, Acta Math. 55, 117 (1930).
  34. A. Khinchin, Korrelationstheorie der stationären stochastischen prozesse, Math. Ann. 109, 604 (1934).
  35. M. Lax, Formal theory of quantum fluctuations from a driven state, Phys. Rev. 129, 2342 (1963).
  36. M. Lax, Quantum noise X. Density-matrix treatment of field and population-difference fluctuations, Phys. Rev. 157, 213 (1967).
  37. H. J. Carmichael, Statistical Methods in Quantum Optics 1: Master Equations and Fokker-Planck Equations, 2nd ed. (Springer Berlin Heidelberg, 2002).
  38. J. Ngaha, Frequency-Filtered Photon Correlations, Ph.D. thesis, The University of Auckland (2023).
  39. J. C. L. Carreño, E. del Valle, and F. P. Laussy, Photon correlations from the Mollow triplet, Laser Photonics Rev. 11, 1700090 (2017).
  40. I. M. Mirza, S. J. van Enk, and H. J. Kimble, Single-photon time-dependent spectra in coupled cavity arrays, J. Opt. Soc. Am. B 30, 2640 (2013).
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com