Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 92 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Kimi K2 157 tok/s Pro
2000 character limit reached

Light-induced charge and spin Hall currents in materials with $C_4K$ symmetry (2405.03779v2)

Published 6 May 2024 in cond-mat.mes-hall

Abstract: Berry curvature, a momentum space property, can manifest itself in current responses. The well-known anomalous Hall effect in time-reversal-breaking systems arises from a Berry curvature monopole. In time-reversal-invariant materials, a second-order Hall conductivity emerges from a Berry curvature dipole. Recently, it has been shown that a Berry curvature quadrupole induces a third-order ac Hall response in systems that break time reversal ($K$) and a fourfold rotational ($C_{4}$) symmetry, while remaining invariant under the combination of the two ($C_{4}K$). In this letter, we demonstrate that incident light can induce a $\rm dc$ Hall current in such systems, driven by the Berry curvature quadrupole. We consider a combination of a static $\rm dc$ electric field and an ac light-induced electric field. We calculate the current perpendicular to both the static electric field and the fourfold axis. Remarkably, the induced current is generically spin-polarized. A net charge current appears for light that is linearly or elliptically polarized, but not for circular polarization. In contrast, the spin current remains unchanged when the polarization of light is varied. This allows for rich possibilities such as generating a spin current by shining circularly polarized light on an altermagnetic material. We demonstrate this physics using a two-dimensional toy model for altermagnets.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (21)
  1. R. Resta, Manifestations of Berry’s phase in molecules and condensed matter, Journal of Physics: Condensed Matter 12, R107 (2000).
  2. D. Xiao, M.-C. Chang, and Q. Niu, Berry phase effects on electronic properties, Rev. Mod. Phys. 82, 1959 (2010a).
  3. J. E. Avron and R. Seiler, Quantization of the Hall conductance for general, multiparticle Schrödinger Hamiltonians, Phys. Rev. Lett. 54, 259 (1985).
  4. F. D. M. Haldane, Model for a quantum Hall effect without landau levels: Condensed-matter realization of the “parity anomaly”, Phys. Rev. Lett. 61, 2015 (1988).
  5. H. Chen, Q. Niu, and A. H. MacDonald, Anomalous Hall effect arising from noncollinear antiferromagnetism, Phys. Rev. Lett. 112, 017205 (2014).
  6. Z. Z. Du, H.-Z. Lu, and X. C. Xie, Nonlinear Hall effects, Nature Reviews Physics 3, 744 (2021).
  7. I. Sodemann and L. Fu, Quantum nonlinear Hall effect induced by Berry curvature dipole in time-reversal invariant materials, Phys. Rev. Lett. 115, 216806 (2015).
  8. Y. Fang, J. Cano, and S. A. A. Ghorashi, Quantum geometry induced nonlinear transport in altermagnets (2023), arXiv:2310.11489 [cond-mat.mes-hall] .
  9. L. Šmejkal, J. Sinova, and T. Jungwirth, Emerging research landscape of altermagnetism, Phys. Rev. X 12, 040501 (2022a).
  10. L. Šmejkal, J. Sinova, and T. Jungwirth, Beyond conventional ferromagnetism and antiferromagnetism: A phase with nonrelativistic spin and crystal rotation symmetry, Phys. Rev. X 12, 031042 (2022b).
  11. F. D. M. Haldane, Berry curvature on the fermi surface: Anomalous Hall effect as a topological fermi-liquid property, Phys. Rev. Lett. 93, 206602 (2004).
  12. T. Oka and H. Aoki, Photovoltaic Hall effect in graphene, Phys. Rev. B 79, 081406 (2009).
  13. M. V. Durnev, Photovoltaic Hall effect in the two-dimensional electron gas: Kinetic theory, Phys. Rev. B 104, 085306 (2021).
  14. Supplemental material .
  15. G. Nienhuis, Chapter 2 - angular momentum and vortices in optics, in Structured Light and Its Applications, edited by D. L. Andrews (Academic Press, Burlington, 2008).
  16. C. Sun and J. Linder, Spin pumping from a ferromagnetic insulator into an altermagnet, Phys. Rev. B 108, L140408 (2023).
  17. S. Das, D. Suri, and A. Soori, Transport across junctions of altermagnets with normal metals and ferromagnets, Journal of Physics: Condensed Matter 35, 435302 (2023).
  18. D. Xiao, M.-C. Chang, and Q. Niu, Berry phase effects on electronic properties, Rev. Mod. Phys. 82, 1959 (2010b).
  19. S.-Q. Shen, Topological Insulators: Dirac Equation in Condensed Matter (Springer Berlin, 2018).
  20. M. J. Lax, Symmetry Principles in Solid State and Molecular Physics (Dover Publications, 2012).
  21. K. V. Samokhin, Symmetry of superconducting pairing in non-pseudospin electron bands, Phys. Rev. B 100, 054501 (2019).
Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com