Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymptotic-preserving hybridizable discontinuous Galerkin method for the Westervelt quasilinear wave equation (2405.03535v2)

Published 6 May 2024 in math.NA, cs.NA, and math.AP

Abstract: We discuss the asymptotic-preserving properties of a hybridizable discontinuous Galerkin method for the Westervelt model of ultrasound waves. More precisely, we show that the proposed method is robust with respect to small values of the sound diffusivity damping parameter $\delta$ by deriving low- and high-order energy stability estimates, and \emph{a priori} error bounds that are independent of $\delta$. Such bounds are then used to show that, when $\delta \rightarrow 0+$, the method remains stable and the discrete acoustic velocity potential $\psi_h{(\delta)}$ converges to $\psi_h{(0)}$, where the latter is the singular vanishing dissipation limit. Moreover, we prove optimal convergence rates for the approximation of the acoustic particle velocity variable $\boldsymbol{v} = \nabla \psi$. The established theoretical results are illustrated with some numerical experiments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. Fixed Point Theory and Applications, volume 141. Cambridge University Press, 2001.
  2. A high-order discontinuous Galerkin method for nonlinear sound waves. J. Comput. Phys., 415:109484, 27, 2020.
  3. The mathematical theory of finite element methods, volume 15 of Texts in Applied Mathematics. Springer, New York, third edition, 2008.
  4. A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems. Math. Comp., 77(264):1887–1916, 2008.
  5. Superconvergence by M𝑀Mitalic_M-decompositions. Part I: General theory for HDG methods for diffusion. Math. Comp., 86(306):1609–1641, 2017.
  6. Stormer-Numerov HDG methods for acoustic waves. J. Sci. Comput., 75(2):597–624, 2018.
  7. Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal., 47(2):1319–1365, 2009.
  8. A projection-based error analysis of HDG methods. Math. Comp., 79(271):1351–1367, 2010.
  9. Superconvergent discontinuous Galerkin methods for second-order elliptic problems. Math. Comp., 78(265):1–24, 2009.
  10. Conditions for superconvergence of HDG methods for second-order elliptic problems. Math. Comp., 81(279):1327–1353, 2012.
  11. B. Cockburn and V. Quenneville-Bélair. Uniform-in-time superconvergence of the HDG methods for the acoustic wave equation. Math. Comp., 83(285):65–85, 2014.
  12. L. Demi and M. D. Verweij. Nonlinear Acoustics. In Comprehensive Biomedical Physics, pages 387–399. Elsevier, Oxford, 2014.
  13. An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Comput. Methods Appl. Math., 14(4):461–472, 2014.
  14. B. Dörich and V. Nikolić. Robust fully discrete error bounds for the Kuznetsov equation in the inviscid limit. arXiv:2401.06492, 2024.
  15. R. Griesmaier and P. Monk. Discretization of the wave equation using continuous elements in time and a hybridizable discontinuous Galerkin method in space. J. Sci. Comput., 58(2):472–498, 2014.
  16. M. Hochbruck and B. Maier. Error analysis for space discretizations of quasilinear wave-type equations. IMA J. Numer. Anal., 42(3):1963–1990, 2022.
  17. T. J. R. Hughes. The finite element method. Prentice Hall, Inc., Englewood Cliffs, NJ, 1987.
  18. B. Kaltenbacher and I. Lasiecka. Global existence and exponential decay rates for the Westervelt equation. Discrete Contin. Dyn. Syst. Ser. S, 2(3):503–523, 2009.
  19. Limiting behavior of quasilinear wave equations with fractional-type dissipation. Adv. Nonlinear Stud. To appear, 2024.
  20. B. Kaltenbacher and V. Nikolić. Parabolic approximation of quasilinear wave equations with applications in nonlinear acoustics. SIAM J. Math. Anal., 54(2):1593–1622, 2022.
  21. B. Kaltenbacher and G. Peichl. The shape derivative for an optimization problem in lithotripsy. Evol. Equ. Control Theory, 5(3):399–429, 2016.
  22. M. Kaltenbacher. Numerical Simulation of Mechatronic Sensors and Actuators, volume 2. Springer, 2007.
  23. Use of modern simulation for industrial applications of high power ultrasonics. In 2002 IEEE Ultrasonics Symposium, volume 1, pages 673–678. IEEE, 2002.
  24. S. Kawashima and Y. Shibata. Global existence and exponential stability of small solutions to nonlinear viscoelasticity. Comm. Math. Phys., 148(1):189–208, 1992.
  25. V. P. Kuznetsov. Equations of nonlinear acoustics. Soviet Physics: Acoustic, 16:467–470, 1970.
  26. B. Maier. Error analysis for space and time discretizations of quasilinear wave-type equations. PhD thesis, Karlsruher Institut für Technologie (KIT), 2020.
  27. M. Meliani. A unified analysis framework for generalized fractional Moore-Gibson-Thompson equations: well-posedness and singular limits. Fract. Calc. Appl. Anal., 26(6):2540–2579, 2023.
  28. M. Meliani and V. Nikolić. Analysis of general shape optimization problems in nonlinear acoustics. Appl. Math. Optim., 86(3):Paper No. 39, 35, 2022.
  29. M. Meliani and V. Nikolić. Mixed approximation of nonlinear acoustic equations: Well-posedness and a priori error analysis. Appl. Numer. Math., 198:94–111, 2024.
  30. S. Meyer and M. Wilke. Optimal regularity and long-time behavior of solutions for the Westervelt equation. Appl. Math. Optim., 64(2):257–271, 2011.
  31. Hybridizable discontinuous Galerkin methods for the time-harmonic Maxwell’s equations. J. Comput. Phys., 230(19):7151–7175, 2011.
  32. V. Nikolić. Asymptotic-preserving finite element analysis of Westervelt-type wave equations. arXiv:2303.10743, 2023.
  33. V. Nikolić and B. Wohlmuth. A priori error estimates for the finite element approximation of Westervelt’s quasi-linear acoustic wave equation. SIAM J. Numer. Anal., 57(4):1897–1918, 2019.
  34. Symplectic Hamiltonian HDG methods for wave propagation phenomena. J. Comput. Phys., 350:951–973, 2017.
  35. I. Shevchenko and B. Kaltenbacher. Absorbing boundary conditions for nonlinear acoustics: the Westervelt equation. J. Comput. Phys., 302:200–221, 2015.
  36. P. J. Westervelt. Parametric acoustic array. The Journal of the Acoustical Society of America, 35(4):535–537, 1963.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com