Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymptotic-preserving finite element analysis of Westervelt-type wave equations (2303.10743v2)

Published 19 Mar 2023 in math.NA and cs.NA

Abstract: Motivated by numerical modeling of ultrasound waves, we investigate robust conforming finite element discretizations of quasilinear and possibly nonlocal equations of Westervelt type. These wave equations involve either a strong dissipation or damping of fractional-derivative type and we unify them into one class by introducing a memory kernel that satisfies non-restrictive regularity and positivity assumptions. As the involved damping parameter is relatively small and can become negligible in certain (inviscid) media, it is important to develop methods that remain stable as the said parameter vanishes. To this end, the contributions of this work are twofold. First, we determine sufficient conditions under which conforming finite element discretizations of (non)local Westervelt equations can be made robust with respect to the dissipation parameter. Secondly, we establish the rate of convergence of the semi-discrete solutions in the singular vanishing dissipation limit. The analysis hinges upon devising appropriate energy functionals for the semi-discrete solutions that remain uniformly bounded with respect to the damping parameter.

Citations (3)

Summary

We haven't generated a summary for this paper yet.