Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Heterogeneous sapphire-supported low-loss photonics platform (2405.03088v1)

Published 6 May 2024 in physics.optics

Abstract: Sapphire is a promising wideband substrate material for visible photonics. It is a common growth substrate for III-nitride light-emitting diodes and laser structures. Doped sapphires are important gain media foundational to the development of titanium-sapphire and ruby lasers. For lasers operating at visible and near-infrared wavelengths, a photonic platform that minimizes loss while maximizing gain material overlap is crucial. Here, we introduce a novel low-loss waveguiding strategy that establishes high-performance integrated photonics on sapphire substrates. This platform achieves a high intrinsic quality factor of 5.6 million near 780 nm and features direct compatibility with a range of solid-state laser gain media.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. R. J. Niffenegger, J. Stuart, C. Sorace-Agaskar, D. Kharas, S. Bramhavar, C. D. Bruzewicz, W. Loh, R. T. Maxson, R. McConnell, D. Reens, G. N. West, J. M. Sage, and J. Chiaverini, “Integrated multi-wavelength control of an ion qubit,” \JournalTitleNature 586, 538–542 (2020).
  2. C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” \JournalTitleRev. Mod. Phys. 89, 035002 (2017).
  3. A. Mohanty, Q. Li, M. A. Tadayon, S. P. Roberts, G. R. Bhatt, E. Shim, X. Ji, J. Cardenas, S. A. Miller, A. Kepecs et al., “Reconfigurable nanophotonic silicon probes for sub-millisecond deep-brain optical stimulation,” \JournalTitleNat. Biomed. Eng 4, 223–231 (2020).
  4. R. Singh, Z. Wang, C. Marques, R. Min, B. Zhang, and S. Kumar, “Alanine aminotransferase detection using TIT assisted four tapered fiber structure-based LSPR sensor: From healthcare to marine life,” \JournalTitleBiosensors and Bioelectronics 236, 115424 (2023).
  5. M. A. Tran, C. Zhang, T. J. Morin, L. Chang, S. Barik, Z. Yuan, W. Lee, G. Kim, A. Malik, Z. Zhang et al., “Extending the spectrum of fully integrated photonics to submicrometre wavelengths,” \JournalTitleNature 610, 54–60 (2022).
  6. A. Siddharth, T. Wunderer, G. Lihachev, A. S. Voloshin, C. Haller, R. N. Wang, M. Teepe, Z. Yang, J. Liu, J. Riemensberger et al., “Near ultraviolet photonic integrated lasers based on silicon nitride,” \JournalTitleAPL Photonics 7, 046108 (2022).
  7. C. A. Franken, A. van Rees, L. V. Winkler, Y. Fan, D. Geskus, R. Dekker, D. H. Geuzebroek, C. Fallnich, P. J. van der Slot, and K.-J. Boller, “Hybrid-integrated diode laser in the visible spectral range,” \JournalTitleOptics Letters 46, 4904–4907 (2021).
  8. M. Sanna, A. Baldazzi, G. Piccoli, S. Azzini, M. Ghulinyan, and L. Pavesi, “SiN integrated photonic components in the visible to near-infrared spectral region,” \JournalTitleOptics Express 32, 9081–9094 (2024).
  9. J. K. Poon, A. Govdeli, A. Sharma, X. Mu, F.-D. Chen, T. Xue, and T. Liu, “Silicon photonics for the visible and near-infrared spectrum,” \JournalTitleAdvances in Optics and Photonics 16, 1–59 (2024).
  10. M. Corato-Zanarella, X. Ji, A. Mohanty, and M. Lipson, “Absorption and scattering limits of silicon nitride integrated photonics in the visible spectrum,” \JournalTitleOptics Express 32, 5718–5728 (2024).
  11. Z. Ye, H. Jia, Z. Huang, C. Shen, J. Long, B. Shi, Y.-H. Luo, L. Gao, W. Sun, H. Guo et al., “Foundry manufacturing of tight-confinement, dispersion-engineered, ultralow-loss silicon nitride photonic integrated circuits,” \JournalTitlePhotonics Research 11, 558–568 (2023).
  12. C. Xiang, W. Jin, and J. E. Bowers, “Silicon nitride passive and active photonic integrated circuits: trends and prospects,” \JournalTitlePhotonics Research 10, A82–A96 (2022).
  13. M. Sinclair, K. Gallacher, M. Sorel, J. C. Bayley, E. McBrearty, R. W. Millar, S. Hild, and D. J. Paul, “1.4 million Q factor Si3N4 micro-ring resonator at 780 nm wavelength for chip-scale atomic systems,” \JournalTitleOptics Express 28, 4010–4020 (2020).
  14. M. H. Pfeiffer, J. Liu, A. S. Raja, T. Morais, B. Ghadiani, and T. J. Kippenberg, “Ultra-smooth silicon nitride waveguides based on the damascene reflow process: fabrication and loss origins,” \JournalTitleOptica 5, 884–892 (2018).
  15. K. A. Buzaverov, A. S. Baburin, E. V. Sergeev, S. S. Avdeev, E. S. Lotkov, M. Andronik, V. E. Stukalova, D. A. Baklykov, I. V. Dyakonov, N. N. Skryabin et al., “Low-loss silicon nitride photonic ICs for near-infrared wavelength bandwidth,” \JournalTitleOptics Express 31, 16227–16242 (2023).
  16. G. N. West, W. Loh, D. Kharas, C. Sorace-Agaskar, K. K. Mehta, J. Sage, J. Chiaverini, and R. J. Ram, “Low-loss integrated photonics for the blue and ultraviolet regime,” \JournalTitleAPL Photonics 4, 026101 (2019).
  17. C. He, Y. Wang, C. Waldfried, G. Yang, J.-F. Zheng, S. Hu, and H. X. Tang, “Ultra-high Q alumina optical microresonators in the UV and blue bands,” \JournalTitleOptics Express 31, 33923–33929 (2023).
  18. T. P. McKenna, J. D. Witmer, R. N. Patel, W. Jiang, R. Van Laer, P. Arrangoiz-Arriola, E. A. Wollack, J. F. Herrmann, and A. H. Safavi-Naeini, “Cryogenic microwave-to-optical conversion using a triply resonant lithium-niobate-on-sapphire transducer,” \JournalTitleOptica 7, 1737–1745 (2020).
  19. B. Desiatov, A. Shams-Ansari, M. Zhang, C. Wang, and M. Lončar, “Ultra-low-loss integrated visible photonics using thin-film lithium niobate,” \JournalTitleOptica 6, 380–384 (2019).
  20. T.-J. Lu, M. Fanto, H. Choi, P. Thomas, J. Steidle, S. Mouradian, W. Kong, D. Zhu, H. Moon, K. Berggren et al., “Aluminum nitride integrated photonics platform for the ultraviolet to visible spectrum,” \JournalTitleOptics Express 26, 11147–11160 (2018).
  21. X. Liu, A. W. Bruch, Z. Gong, J. Lu, J. B. Surya, L. Zhang, J. Wang, J. Yan, and H. X. Tang, “Ultra-high-Q UV microring resonators based on a single-crystalline AlN platform,” \JournalTitleOptica 5, 1279–1282 (2018).
  22. R. Zektzer, N. Mazurski, Y. Barash, and U. Levy, “Nanoscale atomic suspended waveguides for improved vapour coherence times and optical frequency referencing,” \JournalTitleNature Photonics 15, 772–779 (2021).
  23. M. W. Puckett, K. Liu, N. Chauhan, Q. Zhao, N. Jin, H. Cheng, J. Wu, R. O. Behunin, P. T. Rakich, K. D. Nelson et al., “422 million intrinsic quality factor planar integrated all-waveguide resonator with sub-MHz linewidth,” \JournalTitleNature Communications 12, 934 (2021).
  24. T. J. Morin, L. Chang, W. Jin, C. Li, J. Guo, H. Park, M. A. Tran, T. Komljenovic, and J. E. Bowers, “CMOS-foundry-based blue and violet photonics,” \JournalTitleOptica 8, 755–756 (2021).
  25. W. Jin, Q.-F. Yang, L. Chang, B. Shen, H. Wang, M. A. Leal, L. Wu, M. Gao, A. Feshali, M. Paniccia et al., “Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators,” \JournalTitleNature Photonics 15, 346–353 (2021).
  26. J. F. Bauters, M. J. Heck, D. D. John, J. S. Barton, C. M. Bruinink, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding,” \JournalTitleOptics Express 19, 24090–24101 (2011).
  27. Q. Zhao, R. O. Behunin, P. T. Rakich, N. Chauhan, A. Isichenko, J. Wang, C. Hoyt, C. Fertig, D. J. Blumenthal et al., “Low-loss low thermo-optic coefficient Ta2O5 on crystal quartz planar optical waveguides,” \JournalTitleAPL Photonics 5, 116103 (2020).
  28. Y. Wang, J. A. Holguín-Lerma, M. Vezzoli, Y. Guo, and H. X. Tang, “Photonic-circuit-integrated titanium: sapphire laser,” \JournalTitleNature Photonics 17, 338–345 (2023).
  29. J. A. Holguín-Lerma, Y. Wang, Y. Guo, M. Vezzoli, and H. X. Tang, “Narrow-linewidth GaN lasers based on an AlN photonic integrated circuit,” in Frontiers in Optics, (Optica Publishing Group, 2022), pp. FM1E–2.
  30. R. Arefin, S. H. Ramachandra, H. Jung, W. You, S. M. Hasan, H. Turski, S. Dwivedi, and S. Arafin, “III-N/Si3N4 integrated photonics platform for blue wavelengths,” \JournalTitleIEEE Journal of Quantum Electronics 56, 1–9 (2020).
  31. X. Ji, S. Roberts, M. Corato-Zanarella, and M. Lipson, “Methods to achieve ultra-high quality factor silicon nitride resonators,” \JournalTitleAPL Photonics 6, 071101 (2021).
  32. Y. Sun, W. Shin, D. A. Laleyan, P. Wang, A. Pandey, X. Liu, Y. Wu, M. Soltani, and Z. Mi, “Ultrahigh Q microring resonators using a single-crystal aluminum-nitride-on-sapphire platform,” \JournalTitleOptics Letters 44, 5679–5682 (2019).
  33. N. Bhat, M. Gromovyi, M. El Kurdi, X. Checoury, B. Damilano, and P. Boucaud, “GaN/AlN bilayers for integrated photonics,” \JournalTitleOptical Materials Express 14, 792–800 (2024).
  34. E. Stassen, M. Pu, E. Semenova, E. Zavarin, W. Lundin, and K. Yvind, “High-confinement gallium nitride-on-sapphire waveguides for integrated nonlinear photonics,” \JournalTitleOptics Letters 44, 1064–1067 (2019).
  35. Y. Zheng, C. Sun, B. Xiong, L. Wang, Z. Hao, J. Wang, Y. Han, H. Li, J. Yu, and Y. Luo, “Integrated gallium nitride nonlinear photonics,” \JournalTitleLaser & Photonics Reviews 16, 2100071 (2022).
  36. Y. Zheng, M. Pu, H. K. Sahoo, E. Semenova, and K. Yvind, “High-quality-factor AlGaAs-on-sapphire microring resonators,” \JournalTitleJournal of Lightwave Technology 37, 868–874 (2019).
  37. J. Mishra, T. P. McKenna, E. Ng, H. S. Stokowski, M. Jankowski, C. Langrock, D. Heydari, H. Mabuchi, M. Fejer, and A. H. Safavi-Naeini, “Mid-infrared nonlinear optics in thin-film lithium niobate on sapphire,” \JournalTitleOptica 8, 921–924 (2021).
  38. T. Baehr-Jones, A. Spott, R. Ilic, A. Spott, B. Penkov, W. Asher, and M. Hochberg, “Silicon-on-sapphire integrated waveguides for the mid-infrared,” \JournalTitleOptics Express 18, 12127–12135 (2010).
  39. J. Li, H. Lee, K. Y. Yang, and K. J. Vahala, “Sideband spectroscopy and dispersion measurement in microcavities,” \JournalTitleOptics express 20, 26337–26344 (2012).
  40. X. Zhu, Y. Hu, S. Lu, H. K. Warner, X. Li, Y. Song, L. Magalhaes, A. Shams-Ansari, N. Sinclair, and M. Loncar, “Twenty-nine million intrinsic q-factor monolithic microresonators on thin film lithium niobate,” \JournalTitlearXiv preprint arXiv:2402.16161 (2024).
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com