Distribution of Fidelity in Quantum State Transfer Protocols (2405.02721v1)
Abstract: Quantum state transfer protocols are a major toolkit in many quantum information processing tasks, from quantum key distribution to quantum computation. To assess performance of a such a protocol, one often relies on the average fidelity between the input and the output states. Going beyond this scheme, we analyze the entire probability distribution of fidelity, providing a general framework to derive it for the transfer of single- and two-qubit states. Starting from the delta-like shape of the fidelity distribution, characteristic to perfect transfer, we analyze its broadening and deformation due to realistic features of the process, including non-perfect read-out timing. Different models of quantum transfer, sharing the same value of the average fidelity, display different distributions of fidelity, providing thus additional information on the protocol, including the minimum fidelity.
- H. J. Kimble, Nature 453, 1023 (2008).
- D. Cuomo, M. Caleffi, and A. S. Cacciapuoti, IET Quantum Communication 1, 3 (2020).
- S. Bose, Phys. Rev. Lett. 91, 207901 (2003).
- L. Vinet and A. Zhedanov, Phys. Rev. A 86, 052319 (2012).
- T. J. G. Apollaro, S. Lorenzo, and F. Plastina, Int. J. Mod. Phys. B 27, 1345035 (2013).
- C. Di Franco, M. Paternostro, and M. S. Kim, Phys. Rev. A 81, 022319 (2010).
- Z.-M. Wang, M. S. Sarandy, and L.-A. Wu, Phys. Rev. A 102, 022601 (2020).
- A. Kiely and S. Campbell, New J. Phys. 23, 033033 (2021).
- C. Di Franco, M. Paternostro, and M. S. Kim, Phys. Rev. Lett. 101, 230502 (2008).
- M. Markiewicz and M. Wieśniak, Phys. Rev. A 79, 054304 (2009).
- V. Karimipour, M. S. Rad, and M. Asoudeh, Phys. Rev. A 85, 010302 (2012).
- P. Serra, A. Ferrón, and O. Osenda, Physics Letters A 449, 128362 (2022).
- T. Linneweber, J. Stolze, and G. S. Uhrig, Int. J. Quantum Inform. 10, 1250029 (2012).
- K. Korzekwa, P. Machnikowski, and P. Horodecki, Phys. Rev. A 89, 062301 (2014).
- R. Yousefjani and A. Bayat, Phys. Rev. A 102, 012418 (2020).
- G. M. Almeida, F. A. De Moura, and M. L. Lyra, Physics Letters A 382, 1335 (2018).
- R. Vieira and G. Rigolin, Physics Letters A 384, 126536 (2020).
- A. K. Pavlis, G. M. Nikolopoulos, and P. Lambropoulos, Quantum Inf Process 15, 2553 (2016).
- C. Keele and A. Kay, Phys. Rev. A 105, 032612 (2022).
- D. V. Babukhin and W. V. Pogosov, Quantum Inf Process 21, 7 (2022).
- K. Życzkowski and H.-J. Sommers, Phys. Rev. A 71, 032313 (2005).
- I. Chełstowski, G. Rajchel-Mieldzioć, and K. Życzkowski, Phys. Rev. A 108, 022409 (2023).
- K. Życzkowski and H.-J. Sommers, J. Phys. A 34, 7111 (2001).
- V. Cappellini, H.-J. Sommers, and K. Życzkowski, Phys. Rev. A 74, 062322 (2006).
- S. Longhi, G. L. Giorgi, and R. Zambrini, Adv Quantum Tech 2, 1800090 (2019).
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.