Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Exploring Extreme Quantization in Spiking Language Models (2405.02543v3)

Published 4 May 2024 in cs.NE

Abstract: Despite the growing prevalence of LLM architectures, a crucial concern persists regarding their energy and power consumption, which still lags far behind the remarkable energy efficiency of the human brain. Recent strides in spiking LLMs (LM) and transformer architectures aim to address this concern by harnessing the spiking activity of biological neurons to enhance energy/power efficiency. Doubling down on the principles of model quantization and energy efficiency, this paper proposes the development of a novel binary/ternary (1/1.58-bit) spiking LM architecture. Achieving scalability comparable to a deep spiking LM architecture is facilitated by an efficient knowledge distillation technique, wherein knowledge from a non-spiking full-precision "teacher" model is transferred to an extremely weight quantized spiking "student" LM. Our proposed model represents a significant advancement as the first-of-its-kind 1/1.58-bit spiking LM, and its performance is rigorously evaluated on multiple text classification tasks of the GLUE benchmark.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets