Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

sDAC -- Semantic Digital Analog Converter for Semantic Communications (2405.02335v1)

Published 26 Apr 2024 in cs.IT, cs.LG, and math.IT

Abstract: In this paper, we propose a novel semantic digital analog converter (sDAC) for the compatibility of semantic communications and digital communications. Most of the current semantic communication systems are based on the analog modulations, ignoring their incorporation with digital communication systems, which are more common in practice. In fact, quantization methods in traditional communication systems are not appropriate for use in the era of semantic communication as these methods do not consider the semantic information inside symbols. In this case, any bit flip caused by channel noise can lead to a great performance drop. To address this challenge, sDAC is proposed. It is a simple yet efficient and generative module used to realize digital and analog bi-directional conversion. On the transmitter side, continuous values from the encoder are converted to binary bits and then can be modulated by any existing methods. After transmitting through the noisy channel, these bits get demodulated by paired methods and converted back to continuous values for further semantic decoding. The whole progress does not depend on any specific semantic model, modulation methods, or channel conditions. In the experiment section, the performance of sDAC is tested across different semantic models, semantic tasks, modulation methods, channel conditions and quantization orders. Test results show that the proposed sDAC has great generative properties and channel robustness.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. X. Luo, H.-H. Chen, and Q. Guo, “Semantic communications: Overview, open issues, and future research directions,” IEEE Wireless Communications, vol. 29, no. 1, pp. 210–219, 2022.
  2. K. Niu, J. Dai, S. Yao, S. Wang, Z. Si, X. Qin, and P. Zhang, “A paradigm shift toward semantic communications,” IEEE Communications Magazine, vol. 60, pp. 113–119, 2022. [Online]. Available: https://api.semanticscholar.org/CorpusID:251750814
  3. T. J. Richardson and S. Kudekar, “Design of Low-Density Parity Check Codes for 5G New Radio,” IEEE Communications Magazine, vol. 56, pp. 28–34, 2018.
  4. M. Fresia, F. Pérez-Cruz, H. V. Poor, and S. Verdú, “Joint Source and Channel Coding,” IEEE Signal Processing Magazine, vol. 27, pp. 104–113, 2010.
  5. A. Guyader, É. Fabre, C. M. Guillemot, and M. Robert, “Joint source-channel turbo decoding of entropy-coded sources,” IEEE J. Sel. Areas Commun., vol. 19, pp. 1680–1696, 2001.
  6. H. Xie, Z. Qin, G. Y. Li, and B.-H. Juang, “Deep Learning Enabled Semantic Communication Systems,” IEEE Transactions on Signal Processing, vol. 69, pp. 2663–2675, 2020.
  7. E. Bourtsoulatze, D. B. Kurka, and D. Gündüz, “Deep Joint Source-Channel Coding for Wireless Image Transmission,” IEEE Transactions on Cognitive Communications and Networking, vol. 5, pp. 567–579, 2019.
  8. D. B. Kurka and D. Gündüz, “DeepJSCC-f: Deep Joint Source-Channel Coding of Images With Feedback,” IEEE Journal on Selected Areas in Information Theory, vol. 1, pp. 178–193, 2019.
  9. M. Yang, C. Bian, and H.-S. Kim, “Deep Joint Source Channel Coding for Wireless Image Transmission with OFDM,” ICC 2021 - IEEE International Conference on Communications, pp. 1–6, 2021.
  10. X. Chen, J. Wang, L. Xu, J. Huang, and Z. Fei, “A perceptually motivated approach for low-complexity speech semantic communication,” IEEE Internet of Things Journal, pp. 1–1, 2024.
  11. C. Dong, H. Liang, X. Xu, S. Han, B. Wang, and P. Zhang, “Semantic Communication System Based on Semantic Slice Models Propagation,” IEEE Journal on Selected Areas in Communications, vol. 41, pp. 202–213, 2023.
  12. Z. Bao, H. Liang, C. Dong, X. Xu, and G. Liu, “Mdvsc—wireless model division video semantic communication for 6g,” in 2023 IEEE Globecom Workshops (GC Wkshps), 2023, pp. 1572–1578.
  13. X. Liu, H. Liang, Z. Bao, C. Dong, and X. Xu, “Semantic communications system with model division multiple access and controllable coding rate for point cloud,” 2023.
  14. N. Farsad, M. Rao, and A. Goldsmith, “Deep learning for joint source-channel coding of text,” in 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018, pp. 2326–2330.
  15. Z. Weng, Z. Qin, and X. Tao, “Robust semantic communications for speech-to-text translation,” 2024.
  16. D. Chen and W. Hua, “Hierarchical vae based semantic communications for pomdp tasks,” in ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2024, pp. 5540–5544.
  17. M. Wang, Z. Zhang, J. Li, M. Ma, and X. Fan, “Deep joint source-channel coding for multi-task network,” IEEE Signal Processing Letters, vol. 28, pp. 1973–1977, 2021. [Online]. Available: https://api.semanticscholar.org/CorpusID:237494653
  18. M. Jankowski, D. Gündüz, and K. Mikolajczyk, “Wireless image retrieval at the edge,” IEEE Journal on Selected Areas in Communications, vol. 39, pp. 89–100, 2020. [Online]. Available: https://api.semanticscholar.org/CorpusID:220665570
  19. W. F. Lo, N. Mital, H. Wu, and D. Gündüz, “Collaborative semantic communication for edge inference,” IEEE Wireless Communications Letters, vol. 12, pp. 1125–1129, 2023. [Online]. Available: https://api.semanticscholar.org/CorpusID:256827867
  20. T.-Y. Tung, D. B. Kurka, M. Jankowski, and D. Gündüz, “Deepjscc-q: Channel input constrained deep joint source-channel coding,” in ICC 2022 - IEEE International Conference on Communications, 2022, pp. 3880–3885.
  21. K. Ma, S. Shao, and M. Tao, “Image semantic communication over fading channel: A learned broadcast approach,” in 2023 IEEE 24th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2023, pp. 66–70.
  22. Y. Bo, Y. Duan, S. Shao, and M. Tao, “Joint coding-modulation for digital semantic communications via variational autoencoder,” IEEE Transactions on Communications, pp. 1–1, 2024.
  23. S. Xie, S. Ma, M. Ding, Y. Shi, M. Tang, and Y. Wu, “Robust information bottleneck for task-oriented communication with digital modulation,” IEEE Journal on Selected Areas in Communications, vol. 41, no. 8, pp. 2577–2591, 2023.
  24. L. Guo, W. Chen, Y. Sun, and B. Ai, “Device-edge digital semantic communication with trained non-linear quantization,” in 2023 IEEE 97th Vehicular Technology Conference (VTC2023-Spring), 2023, pp. 1–5.
  25. S. Xie, S. Ma, M. Ding, Y. Shi, M.-F. Tang, and Y. Wu, “Robust information bottleneck for task-oriented communication with digital modulation,” IEEE Journal on Selected Areas in Communications, vol. 41, pp. 2577–2591, 2022. [Online]. Available: https://api.semanticscholar.org/CorpusID:252408548
  26. C. Liu, C. Guo, Y. Yang, W. Ni, and T. Q. S. Quek, “Ofdm-based digital semantic communication with importance awareness,” 2024.
  27. J. Park, Y. Oh, S. Kim, and Y.-S. Jeon, “Joint source-channel coding for channel-adaptive digital semantic communications,” 2024.
  28. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” Communications of the ACM, vol. 60, pp. 84 – 90, 2012. [Online]. Available: https://api.semanticscholar.org/CorpusID:195908774
  29. A. van den Oord, O. Vinyals, and K. Kavukcuoglu, “Neural discrete representation learning,” ArXiv, vol. abs/1711.00937, 2017. [Online]. Available: https://api.semanticscholar.org/CorpusID:20282961
  30. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778.
  31. Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multiscale structural similarity for image quality assessment,” The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–1402 Vol.2, 2003.
  32. T. Xue, B. Chen, J. Wu, D. Wei, and W. T. Freeman, “Video Enhancement with Task-Oriented Flow,” International Journal of Computer Vision, pp. 1–20, 2017.
  33. M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, and B. Schiele, “The Cityscapes Dataset for Semantic Urban Scene Understanding,” 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3213–3223, 2016.
Citations (1)

Summary

We haven't generated a summary for this paper yet.