A Spiking Neural Network Decoder for Implantable Brain Machine Interfaces and its Sparsity-aware Deployment on RISC-V Microcontrollers (2405.02146v1)
Abstract: Implantable Brain-machine interfaces (BMIs) are promising for motor rehabilitation and mobility augmentation, and they demand accurate and energy-efficient algorithms. In this paper, we propose a novel spiking neural network (SNN) decoder for regression tasks for implantable BMIs. The SNN is trained with enhanced spatio-temporal backpropagation to fully leverage its capability to handle temporal problems. The proposed SNN decoder outperforms the state-of-the-art Kalman filter and artificial neural network (ANN) decoders in offline finger velocity decoding tasks. The decoder is deployed on a RISC-V-based hardware platform and optimized to exploit sparsity. The proposed implementation has an average power consumption of 0.50 mW in a duty-cycled mode. When conducting continuous inference without duty-cycling, it achieves an energy efficiency of 1.88 uJ per inference, which is 5.5X less than the baseline ANN. Additionally, the average decoding latency is 0.12 ms for each inference, which is 5.7X faster than the ANN implementation.
- L. R. Hochberg, M. D. Serruya, G. M. Friehs, J. A. Mukand, M. Saleh, A. H. Caplan, A. Branner, D. Chen, R. D. Penn, and J. P. Donoghue, “Neuronal ensemble control of prosthetic devices by a human with tetraplegia,” vol. 442, no. 7099, pp. 164–171, number: 7099 Publisher: Nature Publishing Group. [Online]. Available: https://www.nature.com/articles/nature04970
- F. R. Willett, D. T. Avansino, L. R. Hochberg, J. M. Henderson, and K. V. Shenoy, “High-performance brain-to-text communication via handwriting,” vol. 593, no. 7858, pp. 249–254, number: 7858 Publisher: Nature Publishing Group. [Online]. Available: https://www.nature.com/articles/s41586-021-03506-2
- H. Lorach, A. Galvez, V. Spagnolo, F. Martel, S. Karakas, N. Intering, M. Vat, O. Faivre, C. Harte, S. Komi, J. Ravier, T. Collin, L. Coquoz, I. Sakr, E. Baaklini, S. D. Hernandez-Charpak, G. Dumont, R. Buschman, N. Buse, T. Denison, I. Van Nes, L. Asboth, A. Watrin, L. Struber, F. Sauter-Starace, L. Langar, V. Auboiroux, S. Carda, S. Chabardes, T. Aksenova, R. Demesmaeker, G. Charvet, J. Bloch, and G. Courtine, “Walking naturally after spinal cord injury using a brain–spine interface,” vol. 618, no. 7963, pp. 126–133. [Online]. Available: https://www.nature.com/articles/s41586-023-06094-5
- A. B. Rapeaux and T. G. Constandinou, “Implantable brain machine interfaces: first-in-human studies, technology challenges and trends,” vol. 72, pp. 102–111. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S095816692100183X
- D. Seo, R. M. Neely, K. Shen, U. Singhal, E. Alon, J. M. Rabaey, J. M. Carmena, and M. M. Maharbiz, “Wireless recording in the peripheral nervous system with ultrasonic neural dust,” vol. 91, no. 3, pp. 529–539. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0896627316303440
- J. Lim, E. Moon, M. Barrow, S. R. Nason, P. R. Patel, P. G. Patil, S. Oh, I. Lee, H.-S. Kim, D. Sylvester, D. Blaauw, C. A. Chestek, J. Phillips, and T. Jang, “26.9 a 0.19×0.17mm2 wireless neural recording IC for motor prediction with near-infrared-based power and data telemetry,” in 2020 IEEE International Solid- State Circuits Conference - (ISSCC), pp. 416–418, ISSN: 2376-8606.
- Y. Wu, L. Deng, G. Li, J. Zhu, and L. Shi, “Spatio-temporal backpropagation for training high-performance spiking neural networks,” vol. 0, publisher: Frontiers. [Online]. Available: https://www.frontiersin.org/articles/10.3389/fnins.2018.00331/full
- H. Zheng, Y. Wu, L. Deng, Y. Hu, and G. Li, “Going deeper with directly-trained larger spiking neural networks.” [Online]. Available: http://arxiv.org/abs/2011.05280
- E. Donati, M. Payvand, N. Risi, R. Krause, and G. Indiveri, “Discrimination of EMG signals using a neuromorphic implementation of a spiking neural network,” vol. 13, no. 5, pp. 795–803, conference Name: IEEE Transactions on Biomedical Circuits and Systems. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8747378
- F. Baracat, A. Mazzoni, S. Micera, G. Indiveri, and E. Donati, “Neuromorphic event-based processing of transradial intraneural recording for online gesture recognition.” [Online]. Available: https://www.techrxiv.org/users/722218/articles/707510-neuromorphic-event-based-processing-of-transradial-intraneural-recording-for-online-gesture-recognition
- S. Narayanan, K. Taht, R. Balasubramonian, E. Giacomin, and P.-E. Gaillardon, “SpinalFlow: An architecture and dataflow tailored for spiking neural networks,” in 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA). IEEE, pp. 349–362. [Online]. Available: https://ieeexplore.ieee.org/document/9138926/
- K. Malcolm and J. Casco-Rodriguez, “A comprehensive review of spiking neural networks: Interpretation, optimization, efficiency, and best practices.” [Online]. Available: http://arxiv.org/abs/2303.10780
- X. Wang, M. Hersche, M. Magno, and L. Benini, “MI-BMInet: An efficient convolutional neural network for motor imagery brain–machine interfaces with EEG channel selection,” vol. 24, no. 6, pp. 8835–8847. [Online]. Available: https://ieeexplore.ieee.org/document/10409134/
- X. Wang, L. Cavigelli, T. Schneider, and L. Benini, “Sub-100 µW multispectral riemannian classification for EEG-based brain–machine interfaces,” vol. 15, no. 6, pp. 1149–1160. [Online]. Available: https://ieeexplore.ieee.org/document/9658220/
- X. Liu and A. G. Richardson, “Edge deep learning for neural implants: a case study of seizure detection and prediction,” vol. 18, no. 4, p. 046034. [Online]. Available: https://iopscience.iop.org/article/10.1088/1741-2552/abf473
- J. Liao, L. Widmer, X. Wang, A. Di Mauro, S. R. Nason-Tomaszewski, C. A. Chestek, L. Benini, and T. Jang, “An energy-efficient spiking neural network for finger velocity decoding for implantable brain-machine interface,” in 2022 IEEE 4th International Conference on Artificial Intelligence Circuits and Systems (AICAS), pp. 134–137.
- S. R. Nason, M. J. Mender, A. K. Vaskov, M. S. Willsey, P. G. Patil, and C. A. Chestek, “Real-time linear prediction of simultaneous and independent movements of two finger groups using an intracortical brain-machine interface.” [Online]. Available: http://biorxiv.org/lookup/doi/10.1101/2020.10.27.357228
- M. S. Willsey, S. R. Nason-Tomaszewski, S. R. Ensel, H. Temmar, M. J. Mender, J. T. Costello, P. G. Patil, and C. A. Chestek, “Real-time brain-machine interface in non-human primates achieves high-velocity prosthetic finger movements using a shallow feedforward neural network decoder,” vol. 13, no. 1, p. 6899, number: 1 Publisher: Nature Publishing Group. [Online]. Available: https://www.nature.com/articles/s41467-022-34452-w
- G. Leone, L. Martis, L. Raffo, and P. Meloni, “Spiking neural networks for integrated reach-to-grasp decoding on FPGAs,” in 2023 IEEE Biomedical Circuits and Systems Conference (BioCAS). IEEE, pp. 1–5. [Online]. Available: https://ieeexplore.ieee.org/document/10389037/
- H. An, S. R. Nason-Tomaszewski, J. Lim, K. Kwon, M. S. Willsey, P. G. Patil, H.-S. Kim, D. Sylvester, C. A. Chestek, and D. Blaauw, “A power-efficient brain-machine interface system with a sub-mw feature extraction and decoding ASIC demonstrated in nonhuman primates,” vol. 16, no. 3, pp. 395–408, conference Name: IEEE Transactions on Biomedical Circuits and Systems.
- Y. Chen, E. Yao, and A. Basu, “A 128-channel extreme learning machine-based neural decoder for brain machine interfaces,” vol. 10, no. 3, pp. 679–692. [Online]. Available: http://ieeexplore.ieee.org/document/7348721/
- M. A. Shaeri, U. Shin, A. Yadav, R. Caramellino, G. Rainer, and M. Shoaran, “33.3 MiBMI: A 192/512-channel 2.46mm² miniaturized brain-machine interface chipset enabling 31-class brain-to-text conversion through distinctive neural codes,” in 2024 IEEE International Solid-State Circuits Conference (ISSCC). IEEE, pp. 546–548. [Online]. Available: https://ieeexplore.ieee.org/document/10454533/
- F. Boi, T. Moraitis, V. De Feo, F. Diotalevi, C. Bartolozzi, G. Indiveri, and A. Vato, “A bidirectional brain-machine interface featuring a neuromorphic hardware decoder,” vol. 10, publisher: Frontiers. [Online]. Available: https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2016.00563/full
- C. Boretti, L. Prono, C. Frenkel, G. Indiveri, F. Pareschi, M. Mangia, R. Rovatti, and G. Setti, “Event-based classification with recurrent spiking neural networks on low-end micro-controller units,” in 2023 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5, ISSN: 2158-1525.
- J. L. Collinger, B. Wodlinger, J. E. Downey, W. Wang, E. C. Tyler-Kabara, D. J. Weber, A. J. McMorland, M. Velliste, M. L. Boninger, and A. B. Schwartz, “7 degree-of-freedom neuroprosthetic control by an individual with tetraplegia,” vol. 381, no. 9866, pp. 557–564. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3641862/
- G. Hotson, D. P. McMullen, M. S. Fifer, M. S. Johannes, K. D. Katyal, M. P. Para, R. Armiger, W. S. Anderson, N. V. Thakor, B. A. Wester, and N. E. Crone, “Individual finger control of the modular prosthetic limb using high-density electrocorticography in a human subject,” vol. 13, no. 2, p. 026017. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4875758/
- A. B. Ajiboye, F. R. Willett, D. R. Young, W. D. Memberg, B. A. Murphy, J. P. Miller, B. L. Walter, J. A. Sweet, H. A. Hoyen, M. W. Keith, P. H. Peckham, J. D. Simeral, J. P. Donoghue, L. R. Hochberg, and R. F. Kirsch, “Restoration of reaching and grasping in a person with tetraplegia through brain-controlled muscle stimulation: a proof-of-concept demonstration,” vol. 389, no. 10081, pp. 1821–1830. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5516547/
- L. R. Hochberg, D. Bacher, B. Jarosiewicz, N. Y. Masse, J. D. Simeral, J. Vogel, S. Haddadin, J. Liu, S. S. Cash, P. van der Smagt, and J. P. Donoghue, “Reach and grasp by people with tetraplegia using a neurally controlled robotic arm,” vol. 485, no. 7398, pp. 372–375. [Online]. Available: http://www.nature.com/articles/nature11076
- D. Sussillo, P. Nuyujukian, J. M. Fan, J. C. Kao, S. D. Stavisky, S. Ryu, and K. Shenoy, “A recurrent neural network for closed-loop intracortical brain–machine interface decoders,” vol. 9, no. 2, p. 026027. [Online]. Available: https://iopscience.iop.org/article/10.1088/1741-2560/9/2/026027
- T. Hosman, M. Vilela, D. Milstein, J. N. Kelemen, D. M. Brandman, L. R. Hochberg, and J. D. Simeral, “BCI decoder performance comparison of an LSTM recurrent neural network and a kalman filter in retrospective simulation,” in 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER), pp. 1066–1071, ISSN: 1948-3554.
- J. I. Glaser, A. S. Benjamin, R. H. Chowdhury, M. G. Perich, L. E. Miller, and K. P. Kording, “Machine learning for neural decoding,” vol. 7, no. 4, pp. ENEURO.0506–19.2020. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7470933/
- M. S. Willsey, S. R. Nason, S. R. Ensel, H. Temmar, M. J. Mender, J. T. Costello, P. G. Patil, and C. A. Chestek, “Real-time brain-machine interface achieves high-velocity prosthetic finger movements using a biologically-inspired neural network decoder.” [Online]. Available: http://biorxiv.org/lookup/doi/10.1101/2021.08.29.456981
- V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of deep neural networks: A tutorial and survey,” vol. 105, no. 12, pp. 2295–2329, conference Name: Proceedings of the IEEE.
- B. Rueckauer, I.-A. Lungu, Y. Hu, M. Pfeiffer, and S.-C. Liu, “Conversion of continuous-valued deep networks to efficient event-driven networks for image classification,” vol. 11, p. 682. [Online]. Available: https://www.frontiersin.org/article/10.3389/fnins.2017.00682
- J. Dethier, V. Gilja, P. Nuyujukian, S. A. Elassaad, K. V. Shenoy, and K. Boahen, “Spiking neural network decoder for brain-machine interfaces,” p. 10.1109/NER.2011.5910570. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3864805/
- T. Masquelier and S. J. Thorpe, “Unsupervised learning of visual features through spike timing dependent plasticity,” vol. 3, no. 2, pp. 1–11, publisher: Public Library of Science. [Online]. Available: https://doi.org/10.1371/journal.pcbi.0030031
- D. Neil and S.-C. Liu, “Minitaur, an event-driven FPGA-based spiking network accelerator,” vol. 22, no. 12, pp. 2621–2628, conference Name: IEEE Transactions on Very Large Scale Integration (VLSI) Systems.
- S. Moradi, N. Qiao, F. Stefanini, and G. Indiveri, “A scalable multicore architecture with heterogeneous memory structures for dynamic neuromorphic asynchronous processors (DYNAPs),” vol. 12, no. 1, pp. 106–122, conference Name: IEEE Transactions on Biomedical Circuits and Systems.
- C. Frenkel, J.-D. Legat, and D. Bol, “MorphIC: A 65-nm 738k-synapse/mm$^2$ quad-core binary-weight digital neuromorphic processor with stochastic spike-driven online learning,” vol. 13, no. 5, pp. 999–1010. [Online]. Available: http://arxiv.org/abs/1904.08513
- F. Akopyan, J. Sawada, A. Cassidy, R. Alvarez-Icaza, J. Arthur, P. Merolla, N. Imam, Y. Nakamura, P. Datta, G.-J. Nam, B. Taba, M. Beakes, B. Brezzo, J. B. Kuang, R. Manohar, W. P. Risk, B. Jackson, and D. S. Modha, “TrueNorth: Design and tool flow of a 65 mW 1 million neuron programmable neurosynaptic chip,” vol. 34, no. 10, pp. 1537–1557, conference Name: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.
- M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday, G. Dimou, P. Joshi, N. Imam, S. Jain, Y. Liao, C.-K. Lin, A. Lines, R. Liu, D. Mathaikutty, S. McCoy, A. Paul, J. Tse, G. Venkataramanan, Y.-H. Weng, A. Wild, Y. Yang, and H. Wang, “Loihi: A neuromorphic manycore processor with on-chip learning,” vol. 38, no. 1, pp. 82–99, conference Name: IEEE Micro.
- S. R. Nason, A. K. Vaskov, M. S. Willsey, E. J. Welle, H. An, P. P. Vu, A. J. Bullard, C. S. Nu, J. C. Kao, K. V. Shenoy, T. Jang, H.-S. Kim, D. Blaauw, P. G. Patil, and C. A. Chestek, “A low-power band of neuronal spiking activity dominated by local single units improves the performance of brain–machine interfaces,” vol. 4, no. 10, pp. 973–983. [Online]. Available: http://www.nature.com/articles/s41551-020-0591-0
- E. Izhikevich, “Which model to use for cortical spiking neurons?” vol. 15, no. 5, pp. 1063–1070, conference Name: IEEE Transactions on Neural Networks.
- P.-Y. Tan, C.-W. Wu, and J.-M. Lu, “An improved STBP for training high-accuracy and low-spike-count spiking neural networks,” in 2021 Design, Automation Test in Europe Conference Exhibition (DATE), pp. 575–580, ISSN: 1558-1101.
- S. B. Shrestha and G. Orchard, “SLAYER: Spike layer error reassignment in time,” in Advances in Neural Information Processing Systems, vol. 31. Curran Associates, Inc. [Online]. Available: https://papers.nips.cc/paper/2018/hash/82f2b308c3b01637c607ce05f52a2fed-Abstract.html
- I. Loshchilov and F. Hutter, “Decoupled weight decay regularization.” [Online]. Available: https://openreview.net/forum?id=Bkg6RiCqY7
- A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer, “A survey of quantization methods for efficient neural network inference.” [Online]. Available: http://arxiv.org/abs/2103.13630
- M. Horowitz, “1.1 computing’s energy problem (and what we can do about it),” in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 10–14, ISSN: 2376-8606.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.