Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 236 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Computational Electromagnetics Meets Spin Qubits: Controlling Noise Effects in Quantum Sensing and Computing (2405.01830v2)

Published 3 May 2024 in quant-ph, physics.comp-ph, and physics.optics

Abstract: Solid-state spin qubits have emerged as promising platforms for quantum information. Despite extensive efforts in controlling noise in spin qubit quantum applications, one important but less controlled noise source is near-field electromagnetic fluctuations. Low-frequency (MHz and GHz) electromagnetic fluctuations are significantly enhanced near lossy material components in quantum applications, including metallic/superconducting gates necessary for controlling spin qubits in quantum computing devices and materials/nanostructures to be probed in quantum sensing. Although controlling this low-frequency electromagnetic fluctuation noise is crucial for improving the performance of quantum devices, current efforts are hindered by computational challenges. In this paper, we leverage advanced computational electromagnetics techniques, especially fast and accurate volume integral equation based solvers, to overcome the computational obstacle. We introduce a quantum computational electromagnetics framework to control low-frequency magnetic fluctuation noise and enhance spin qubit device performance. Our framework extends the application of computational electromagnetics to spin qubit quantum devices. Furthermore, we demonstrate the application of our framework in realistic quantum devices. Our work paves the way for device engineering to control magnetic fluctuations and improve the performance of spin qubit quantum sensing and computing.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (84)
  1. G. Burkard, T. D. Ladd, A. Pan, J. M. Nichol, and J. R. Petta, “Semiconductor spin qubits,” Reviews of Modern Physics, vol. 95, no. 2, p. 025003, 2023.
  2. D. Suter and G. A. Álvarez, “Colloquium: Protecting quantum information against environmental noise,” Reviews of Modern Physics, vol. 88, no. 4, p. 041001, 2016.
  3. E. Chekhovich, M. Makhonin, A. Tartakovskii, A. Yacoby, H. Bluhm, K. Nowack, and L. Vandersypen, “Nuclear spin effects in semiconductor quantum dots,” Nature materials, vol. 12, no. 6, pp. 494–504, 2013.
  4. K. M. Itoh and H. Watanabe, “Isotope engineering of silicon and diamond for quantum computing and sensing applications,” MRS communications, vol. 4, no. 4, pp. 143–157, 2014.
  5. J. Yoneda, J. Rojas-Arias, P. Stano, K. Takeda, A. Noiri, T. Nakajima, D. Loss, and S. Tarucha, “Noise-correlation spectrum for a pair of spin qubits in silicon,” Nature Physics, vol. 19, no. 12, pp. 1793–1798, 2023.
  6. J. M. Boter, X. Xue, T. Krähenmann, T. F. Watson, V. N. Premakumar, D. R. Ward, D. E. Savage, M. G. Lagally, M. Friesen, S. N. Coppersmith et al., “Spatial noise correlations in a si/sige two-qubit device from bell state coherences,” Physical Review B, vol. 101, no. 23, p. 235133, 2020.
  7. B. Paquelet Wuetz, D. Degli Esposti, A.-M. J. Zwerver, S. V. Amitonov, M. Botifoll, J. Arbiol, A. Sammak, L. M. Vandersypen, M. Russ, and G. Scappucci, “Reducing charge noise in quantum dots by using thin silicon quantum wells,” Nature communications, vol. 14, no. 1, p. 1385, 2023.
  8. E. J. Connors, J. Nelson, H. Qiao, L. F. Edge, and J. M. Nichol, “Low-frequency charge noise in si/sige quantum dots,” Physical Review B, vol. 100, no. 16, p. 165305, 2019.
  9. C. L. Degen, F. Reinhard, and P. Cappellaro, “Quantum sensing,” Reviews of modern physics, vol. 89, no. 3, p. 035002, 2017.
  10. S. Kolkowitz, A. Safira, A. High, R. Devlin, S. Choi, Q. Unterreithmeier, D. Patterson, A. Zibrov, V. Manucharyan, H. Park et al., “Probing johnson noise and ballistic transport in normal metals with a single-spin qubit,” Science, vol. 347, no. 6226, pp. 1129–1132, 2015.
  11. A. Ariyaratne, D. Bluvstein, B. A. Myers, and A. C. B. Jayich, “Nanoscale electrical conductivity imaging using a nitrogen-vacancy center in diamond,” Nature communications, vol. 9, no. 1, p. 2406, 2018.
  12. S. B. Tenberg, S. Asaad, M. T. Madzik, M. A. Johnson, B. Joecker, A. Laucht, F. E. Hudson, K. M. Itoh, A. M. Jakob, B. C. Johnson et al., “Electron spin relaxation of single phosphorus donors in metal-oxide-semiconductor nanoscale devices,” Physical Review B, vol. 99, no. 20, p. 205306, 2019.
  13. L. S. Langsjoen, A. Poudel, M. G. Vavilov, and R. Joynt, “Qubit relaxation from evanescent-wave johnson noise,” Physical Review A, vol. 86, no. 1, p. 010301, 2012.
  14. W. Sun, S. Bharadwaj, L.-P. Yang, Y.-L. Hsueh, Y. Wang, D. Jiao, R. Rahman, and Z. Jacob, “Limits to quantum gate fidelity from near-field thermal and vacuum fluctuations,” Physical Review Applied, vol. 19, no. 6, p. 064038, 2023.
  15. K. Takeda, A. Noiri, T. Nakajima, J. Yoneda, T. Kobayashi, and S. Tarucha, “Quantum tomography of an entangled three-qubit state in silicon,” Nature Nanotechnology, vol. 16, no. 9, pp. 965–969, 2021.
  16. W. Huang, C. Yang, K. Chan, T. Tanttu, B. Hensen, R. Leon, M. Fogarty, J. Hwang, F. Hudson, K. M. Itoh et al., “Fidelity benchmarks for two-qubit gates in silicon,” Nature, vol. 569, no. 7757, pp. 532–536, 2019.
  17. Y. He, S. Gorman, D. Keith, L. Kranz, J. Keizer, and M. Simmons, “A two-qubit gate between phosphorus donor electrons in silicon,” Nature, vol. 571, no. 7765, pp. 371–375, 2019.
  18. A. Morello, J. J. Pla, P. Bertet, and D. N. Jamieson, “Donor spins in silicon for quantum technologies,” Advanced Quantum Technologies, vol. 3, no. 11, p. 2000005, 2020.
  19. Y. Wang, A. Tankasala, L. C. Hollenberg, G. Klimeck, M. Y. Simmons, and R. Rahman, “Highly tunable exchange in donor qubits in silicon,” npj Quantum Information, vol. 2, no. 1, pp. 1–5, 2016.
  20. X. Xue, M. Russ, N. Samkharadze, B. Undseth, A. Sammak, G. Scappucci, and L. M. Vandersypen, “Quantum logic with spin qubits crossing the surface code threshold,” Nature, vol. 601, no. 7893, pp. 343–347, 2022.
  21. N. W. Hendrickx, W. I. Lawrie, M. Russ, F. van Riggelen, S. L. de Snoo, R. N. Schouten, A. Sammak, G. Scappucci, and M. Veldhorst, “A four-qubit germanium quantum processor,” Nature, vol. 591, no. 7851, pp. 580–585, 2021.
  22. D. D. Awschalom, C. R. Du, R. He, F. J. Heremans, A. Hoffmann, J. Hou, H. Kurebayashi, Y. Li, L. Liu, V. Novosad et al., “Quantum engineering with hybrid magnonic systems and materials,” IEEE Transactions on Quantum Engineering, vol. 2, pp. 1–36, 2021.
  23. A. Clerk, K. Lehnert, P. Bertet, J. Petta, and Y. Nakamura, “Hybrid quantum systems with circuit quantum electrodynamics,” Nature Physics, vol. 16, no. 3, pp. 257–267, 2020.
  24. M. Niknam, M. F. F. Chowdhury, M. M. Rajib, W. A. Misba, R. N. Schwartz, K. L. Wang, J. Atulasimha, and L.-S. Bouchard, “Quantum control of spin qubits using nanomagnets,” Communications Physics, vol. 5, no. 1, p. 284, 2022.
  25. W. Sun, A. E. R. López, and Z. Jacob, “Nano-electromagnetic super-dephasing in collective atom-atom interactions,” arXiv preprint arXiv:2402.18816, 2024.
  26. F. Khosravi, W. Sun, C. Khandekar, T. Li, and Z. Jacob, “Giant enhancement of vacuum friction in spinning yig nanospheres,” arXiv preprint arXiv:2401.09563, 2024.
  27. V. N. Premakumar, M. G. Vavilov, and R. Joynt, “Evanescent-wave johnson noise in small devices,” Quantum Science and Technology, vol. 3, no. 1, p. 015001, 2017.
  28. F. Machado, E. A. Demler, N. Y. Yao, and S. Chatterjee, “Quantum noise spectroscopy of dynamical critical phenomena,” Physical Review Letters, vol. 131, no. 7, p. 070801, 2023.
  29. P. E. Dolgirev, I. Esterlis, A. A. Zibrov, M. D. Lukin, T. Giamarchi, and E. Demler, “Local noise spectroscopy of wigner crystals in two-dimensional materials,” arXiv preprint arXiv:2308.16243, 2023.
  30. T. Van der Sar, F. Casola, R. Walsworth, and A. Yacoby, “Nanometre-scale probing of spin waves using single electron spins,” Nature communications, vol. 6, no. 1, p. 7886, 2015.
  31. B. L. Dwyer, L. V. Rodgers, E. K. Urbach, D. Bluvstein, S. Sangtawesin, H. Zhou, Y. Nassab, M. Fitzpatrick, Z. Yuan, K. De Greve et al., “Probing spin dynamics on diamond surfaces using a single quantum sensor,” PRX Quantum, vol. 3, no. 4, p. 040328, 2022.
  32. T. Staudacher, N. Raatz, S. Pezzagna, J. Meijer, F. Reinhard, C. Meriles, and J. Wrachtrup, “Probing molecular dynamics at the nanoscale via an individual paramagnetic centre,” Nature communications, vol. 6, no. 1, p. 8527, 2015.
  33. P. Bhattacharyya, W. Chen, X. Huang, S. Chatterjee, B. Huang, B. Kobrin, Y. Lyu, T. Smart, M. Block, E. Wang et al., “Imaging the meissner effect in hydride superconductors using quantum sensors,” Nature, pp. 1–7, 2024.
  34. L. Thiel, Z. Wang, M. A. Tschudin, D. Rohner, I. Gutiérrez-Lezama, N. Ubrig, M. Gibertini, E. Giannini, A. F. Morpurgo, and P. Maletinsky, “Probing magnetism in 2d materials at the nanoscale with single-spin microscopy,” Science, vol. 364, no. 6444, pp. 973–976, 2019.
  35. J. Rovny, S. Gopalakrishnan, A. C. B. Jayich, P. Maletinsky, E. Demler, and N. P. de Leon, “New opportunities in condensed matter physics for nanoscale quantum sensors,” arXiv preprint arXiv:2403.13710, 2024.
  36. D. G. Baranov, R. S. Savelev, S. V. Li, A. E. Krasnok, and A. Alù, “Modifying magnetic dipole spontaneous emission with nanophotonic structures,” Laser & Photonics Reviews, vol. 11, no. 3, p. 1600268, 2017.
  37. A. K. Boddeti, J. Guan, T. Sentz, X. Juarez, W. Newman, C. Cortes, T. W. Odom, and Z. Jacob, “Long-range dipole–dipole interactions in a plasmonic lattice,” Nano letters, vol. 22, no. 1, pp. 22–28, 2021.
  38. C. R. Otey, L. Zhu, S. Sandhu, and S. Fan, “Fluctuational electrodynamics calculations of near-field heat transfer in non-planar geometries: A brief overview,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 132, pp. 3–11, 2014.
  39. A. W. Rodriguez, O. Ilic, P. Bermel, I. Celanovic, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson, “Frequency-selective near-field radiative heat transfer between photonic crystal slabs: a computational approach for arbitrary geometries and materials,” Physical review letters, vol. 107, no. 11, p. 114302, 2011.
  40. M. H. Reid, A. W. Rodriguez, J. White, and S. G. Johnson, “Efficient computation of casimir interactions between arbitrary 3d objects,” Physical review letters, vol. 103, no. 4, p. 040401, 2009.
  41. T. E. Roth and W. C. Chew, “Full-wave computation of the spontaneous emission rate of a transmon qubit,” in 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI).   IEEE, 2021, pp. 1801–1802.
  42. D. N. Pham, R. D. Li, and H. E. Türeci, “Spectral theory for non-linear superconducting microwave systems: Extracting relaxation rates and mode hybridization,” arXiv preprint arXiv:2309.03435, 2023.
  43. C. Wang, X. Li, H. Xu, Z. Li, J. Wang, Z. Yang, Z. Mi, X. Liang, T. Su, C. Yang et al., “Towards practical quantum computers: Transmon qubit with a lifetime approaching 0.5 milliseconds,” npj Quantum Information, vol. 8, no. 1, p. 3, 2022.
  44. M. Ma and D. Jiao, “Accuracy directly controlled fast direct solution of general ℋ2superscriptℋ2\mathcal{H}^{2}caligraphic_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT -matrices and its application to solving electrodynamic volume integral equations,” IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 1, pp. 35–48, 2018.
  45. S. Omar and D. Jiao, “A linear complexity direct volume integral equation solver for full-wave 3-d circuit extraction in inhomogeneous materials,” IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 3, pp. 897–912, 2015.
  46. Y. Wang and D. Jiao, “Fast O(N logN) algorithm for generating rank-minimized H2superscriptH2\mathrm{H}^{2}roman_H start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT-representation of electrically large volume integral equations,” IEEE Transactions on Antennas and Propagation, vol. 70, no. 8, pp. 6944–6956, 2022.
  47. L. Tosi and P. Rocca, “Antenna array analysis through universal quantum computing processors—a study on noise modeling and impact,” IEEE Transactions on Microwave Theory and Techniques, 2023.
  48. F. Solgun, D. W. Abraham, and D. P. DiVincenzo, “Blackbox quantization of superconducting circuits using exact impedance synthesis,” Physical Review B, vol. 90, no. 13, p. 134504, 2014.
  49. W. Smith, A. Kou, U. Vool, I. Pop, L. Frunzio, R. Schoelkopf, and M. Devoret, “Quantization of inductively shunted superconducting circuits,” Physical Review B, vol. 94, no. 14, p. 144507, 2016.
  50. C. J. Ryu, D.-Y. Na, and W. C. Chew, “Matrix product states and numerical mode decomposition for the analysis of gauge-invariant cavity quantum electrodynamics,” Physical Review A, vol. 107, no. 6, p. 063707, 2023.
  51. D.-Y. Na, J. Zhu, and W. C. Chew, “Diagonalization of the hamiltonian for finite-sized dispersive media: Canonical quantization with numerical mode decomposition,” Physical Review A, vol. 103, no. 6, p. 063707, 2021.
  52. A. J. Daley, I. Bloch, C. Kokail, S. Flannigan, N. Pearson, M. Troyer, and P. Zoller, “Practical quantum advantage in quantum simulation,” Nature, vol. 607, no. 7920, pp. 667–676, 2022.
  53. A. Delgado, P. A. Casares, R. Dos Reis, M. S. Zini, R. Campos, N. Cruz-Hernández, A.-C. Voigt, A. Lowe, S. Jahangiri, M. A. Martin-Delgado et al., “Simulating key properties of lithium-ion batteries with a fault-tolerant quantum computer,” Physical Review A, vol. 106, no. 3, p. 032428, 2022.
  54. C. W. Bauer, Z. Davoudi, A. B. Balantekin, T. Bhattacharya, M. Carena, W. A. De Jong, P. Draper, A. El-Khadra, N. Gemelke, M. Hanada et al., “Quantum simulation for high-energy physics,” PRX quantum, vol. 4, no. 2, p. 027001, 2023.
  55. B. Bauer, S. Bravyi, M. Motta, and G. K.-L. Chan, “Quantum algorithms for quantum chemistry and quantum materials science,” Chemical Reviews, vol. 120, no. 22, pp. 12 685–12 717, 2020.
  56. V. von Burg, G. H. Low, T. Häner, D. S. Steiger, M. Reiher, M. Roetteler, and M. Troyer, “Quantum computing enhanced computational catalysis,” Physical Review Research, vol. 3, no. 3, p. 033055, 2021.
  57. D. Rosenberg, S. J. Weber, D. Conway, D.-R. W. Yost, J. Mallek, G. Calusine, R. Das, D. Kim, M. E. Schwartz, W. Woods et al., “Solid-state qubits: 3d integration and packaging,” IEEE Microwave Magazine, vol. 21, no. 8, pp. 72–85, 2020.
  58. A. Chatterjee, P. Stevenson, S. De Franceschi, A. Morello, N. P. de Leon, and F. Kuemmeth, “Semiconductor qubits in practice,” Nature Reviews Physics, vol. 3, no. 3, pp. 157–177, 2021.
  59. D. Loss and D. P. DiVincenzo, “Quantum computation with quantum dots,” Physical Review A, vol. 57, no. 1, p. 120, 1998.
  60. B. E. Kane, “A silicon-based nuclear spin quantum computer,” Nature, vol. 393, no. 6681, pp. 133–137, 1998.
  61. J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, “Coherent manipulation of coupled electron spins in semiconductor quantum dots,” Science, vol. 309, no. 5744, pp. 2180–2184, 2005.
  62. D. Bacon, J. Kempe, D. A. Lidar, and K. B. Whaley, “Universal fault-tolerant quantum computation on decoherence-free subspaces,” Physical Review Letters, vol. 85, no. 8, p. 1758, 2000.
  63. K. C. Miao, J. P. Blanton, C. P. Anderson, A. Bourassa, A. L. Crook, G. Wolfowicz, H. Abe, T. Ohshima, and D. D. Awschalom, “Universal coherence protection in a solid-state spin qubit,” Science, vol. 369, no. 6510, pp. 1493–1497, 2020.
  64. Á. Gali, “Ab initio theory of the nitrogen-vacancy center in diamond,” Nanophotonics, vol. 8, no. 11, pp. 1907–1943, 2019.
  65. L. Childress and R. Hanson, “Diamond nv centers for quantum computing and quantum networks,” MRS bulletin, vol. 38, no. 2, pp. 134–138, 2013.
  66. R. Debroux, C. P. Michaels, C. M. Purser, N. Wan, M. E. Trusheim, J. A. Martínez, R. A. Parker, A. M. Stramma, K. C. Chen, L. De Santis et al., “Quantum control of the tin-vacancy spin qubit in diamond,” Physical Review X, vol. 11, no. 4, p. 041041, 2021.
  67. C. P. Anderson, E. O. Glen, C. Zeledon, A. Bourassa, Y. Jin, Y. Zhu, C. Vorwerk, A. L. Crook, H. Abe, J. Ul-Hassan et al., “Five-second coherence of a single spin with single-shot readout in silicon carbide,” Science advances, vol. 8, no. 5, p. eabm5912, 2022.
  68. S. Vaidya, X. Gao, S. Dikshit, I. Aharonovich, and T. Li, “Quantum sensing and imaging with spin defects in hexagonal boron nitride,” Advances in Physics: X, vol. 8, no. 1, p. 2206049, 2023.
  69. R. Klesse and S. Frank, “Quantum error correction in spatially correlated quantum noise,” Physical review letters, vol. 95, no. 23, p. 230503, 2005.
  70. S. Y. Buhmann and D.-G. Welsch, “Dispersion forces in macroscopic quantum electrodynamics,” Progress in quantum electronics, vol. 31, no. 2, pp. 51–130, 2007.
  71. T. Van Der Sijs, O. El Gawhary, and H. Urbach, “Electromagnetic scattering beyond the weak regime: Solving the problem of divergent born perturbation series by padé approximants,” Physical Review Research, vol. 2, no. 1, p. 013308, 2020.
  72. R. Kleinman, G. Roach, and P. Van Den Berg, “Convergent born series for large refractive indices,” JOSA A, vol. 7, no. 5, pp. 890–897, 1990.
  73. C. L. Cortes, W. Sun, and Z. Jacob, “Fundamental efficiency bound for quantum coherent energy transfer in nanophotonics,” Optics Express, vol. 30, no. 19, pp. 34 725–34 739, 2022.
  74. S. Y. Buhmann, D. T. Butcher, and S. Scheel, “Macroscopic quantum electrodynamics in nonlocal and nonreciprocal media,” New Journal of Physics, vol. 14, no. 8, p. 083034, 2012.
  75. S. Scheel and S. Y. Buhmann, “Macroscopic qed-concepts and applications,” arXiv preprint arXiv:0902.3586, 2009.
  76. L.-P. Yang, C. Khandekar, T. Li, and Z. Jacob, “Single photon pulse induced transient entanglement force,” New Journal of Physics, vol. 22, no. 2, p. 023037, 2020.
  77. Ł. Cywiński, R. M. Lutchyn, C. P. Nave, and S. D. Sarma, “How to enhance dephasing time in superconducting qubits,” Physical Review B, vol. 77, no. 17, p. 174509, 2008.
  78. M. A. Nielsen, “A simple formula for the average gate fidelity of a quantum dynamical operation,” Physics Letters A, vol. 303, no. 4, pp. 249–252, 2002.
  79. A. Poudel, L. S. Langsjoen, M. G. Vavilov, and R. Joynt, “Relaxation in quantum dots due to evanescent-wave johnson noise,” Physical Review B, vol. 87, no. 4, p. 045301, 2013.
  80. C. Khandekar and Z. Jacob, “Thermal spin photonics in the near-field of nonreciprocal media,” New Journal of Physics, vol. 21, no. 10, p. 103030, 2019.
  81. J. De Vries, “Temperature and thickness dependence of the resistivity of thin polycrystalline aluminium, cobalt, nickel, palladium, silver and gold films,” Thin Solid Films, vol. 167, no. 1-2, pp. 25–32, 1988.
  82. C. J. Wood and J. M. Gambetta, “Quantification and characterization of leakage errors,” Physical Review A, vol. 97, no. 3, p. 032306, 2018.
  83. R. Zhou, W. Sun, S. Bharadwaj, Z. Jacob, and D. Jiao, “Fast volume integral equation based modeling of quantum gate circuitry: Capturing local vs. nonlocal effects on spin qubits,” in 2023 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (USNC-URSI).   IEEE, 2023, pp. 1179–1180.
  84. J. S. Jensen and O. Sigmund, “Topology optimization for nano-photonics,” Laser & Photonics Reviews, vol. 5, no. 2, pp. 308–321, 2011.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube