Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Controlling Communications Quality in V2V Platooning: a TSN-like Slot-Based Scheduler Approach (2405.01301v1)

Published 2 May 2024 in cs.NI

Abstract: Connected vehicles, facilitated by Vehicle-to-Vehicle (V2V) communications, play a key role in enhancing road safety and traffic efficiency. However, V2V communications primarily rely on wireless protocols, such as Wi-Fi, that require additional collision avoidance mechanisms to better ensure bounded latency and reliability in critical scenarios. In this paper, we introduce a novel approach to address the challenge of message collision in V2V platooning through a slotted-based solution inspired by Time-Sensitive Networking (TSN), which is gaining momentum for in-vehicle networks. To this end, we present a controller, named TSNCtl, operating at the application level of the vehicular communications stack. TSNCtl employs a finite state machine (FSM) to manage platoon formation and slot-based scheduling for message dissemination. The reported evaluation results, based on the OMNeT++ simulation framework and INET library, demonstrate the effectiveness of TSNCtl in reducing packet collisions across various scenarios. Specifically, our experiments reveal a significant reduction in packet collisions compared to the CSMA-CA baseline used in traditional Wi-Fi-based protocols (e.g., IEEE 802.11p): for instance, with slot lengths of 2 ms, our solution achieves an average collision rate under 1%, compared to up to 50% for the baseline case.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (38)
  1. R. Baldessari, B. Bödekker, M. Deegener, A. Festag, W. Franz, C. C. Kellum, T. Kosch, A. Kovacs, M. Lenardi, C. Menig et al., “Car-2-car communication consortium-manifesto,” 2007.
  2. T. ETSI, “Etsi tr 102 638-intelligent transport systems (its); vehicular communications; basic set of applications; definitions,” Vehicular Communications; Basic Set of Applications; Definitions, vol. 1, 2009.
  3. CAR2CAR, “Use cases car 2 car communication consortium,” https://www.car-2-car.org/fileadmin/documents/General_Documents/C2CCC_UC_2097_UseCases_V1.0.pdf, 2023, [Accessed 10-03-2024].
  4. D. Jia, K. Lu, J. Wang, X. Zhang, and X. Shen, “A survey on platoon-based vehicular cyber-physical systems,” IEEE communications surveys & tutorials, vol. 18, no. 1, pp. 263–284, 2015.
  5. S. Zeadally, J. Guerrero, and J. Contreras, “A tutorial survey on vehicle-to-vehicle communications,” Telecommunication Systems, vol. 73, pp. 469–489, 2020.
  6. “IEEE Standard for Information technology– Local and metropolitan area networks– Specific requirements– Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 6: Wireless Access in Vehicular Environments,” IEEE Std 802.11p-2010 (Amendment to IEEE Std 802.11-2007 as amended by IEEE Std 802.11k-2008, IEEE Std 802.11r-2008, IEEE Std 802.11y-2008, IEEE Std 802.11n-2009, and IEEE Std 802.11w-2009), pp. 1–51, 2010.
  7. E. ETSI, “302 663 v1. 3.1. final draft etsi en 302 663 v1. 3.1 intelligent transport systems (its); its-g5 access layer specification for intelligent transport systems operating in the 5 ghz frequency band,” Technical report, 2019-10, Tech. Rep.
  8. I. . W. Group et al., “Ieee standard for wireless access in vehicular environments (wave)-networking services,” IEEE Std, vol. 1609, 2016.
  9. 3rd Generation Partnership Project, “3gpp tr 21.914 v14. 0.0 (2018-05) 3rd generation partnership project; technical specification group services and system aspects; release 14 description; summary of rel-14 work items (release 14),” 2018.
  10. J. Meredith, F. Firmin, and M. Pope, “Release 16 description; summary of rel-16 work items,” 3rd Generation Partnership Project (3GPP), Technical report (TR), vol. 21, 2022.
  11. J. Zang, V. Towhidlou, and M. Shikh-Bahaei, “Collision avoidance in v2x communication networks,” in 2019 IEEE Wireless Communications and Networking Conference Workshop (WCNCW), 2019, pp. 1–6.
  12. Y. Jeon, S. Kuk, and H. Kim, “Reducing message collisions in sensing-based semi-persistent scheduling (sps) by using reselection lookaheads in cellular v2x,” Sensors, vol. 18, no. 12, 2018. [Online]. Available: https://www.mdpi.com/1424-8220/18/12/4388
  13. T. Maruko, S. Yasukawa, R. Kudo, S. Nagata, and M. Iwamura, “Packet collision reduction scheme for lte v2x sidelink communications,” in 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), 2018, pp. 1–5.
  14. ETSI, “Intelligent Transport Systems (ITS);Vehicular Communications; Basic Set of Applications; Cooperative Awareness Service;Release 2,” TECHNICAL SPECIFICATION ETSI TS 103 900 V2.1.1, 2023.
  15. E. ETSI, “302 637-3 “Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set of Applications; Part 3: Specification of Descentralized Environmental Notification Basic Service”, ETSI, 2014,” IEEE Open, 2020.
  16. A. Nasrallah, A. S. Thyagaturu, Z. Alharbi, C. Wang, X. Shao, M. Reisslein, and H. ElBakoury, “Ultra-low latency (ull) networks: The ieee tsn and ietf detnet standards and related 5g ull research,” IEEE Communications Surveys & Tutorials, vol. 21, no. 1, pp. 88–145, 2018.
  17. Z. Satka, M. Ashjaei, H. Fotouhi, M. Daneshtalab, M. Sjödin, and S. Mubeen, “A comprehensive systematic review of integration of time sensitive networking and 5g communication,” Journal of systems architecture, vol. 138, p. 102852, 2023.
  18. Y. Peng, B. Shi, T. Jiang, X. Tu, D. Xu, and K. Hua, “A survey on in-vehicle time-sensitive networking,” IEEE Internet of Things Journal, vol. 10, no. 16, pp. 14 375–14 396, 2023.
  19. “Ieee standard for local and metropolitan area networks–timing and synchronization for time-sensitive applications,” IEEE Std 802.1AS-2020 (Revision of IEEE Std 802.1AS-2011), pp. 1–421, 2020.
  20. A. Garbugli, A. Bujari, and P. Bellavista, “End-to-end qos management in self-configuring tsn networks,” in 2021 17th IEEE International conference on factory communication systems (WFCS).   IEEE, 2021, pp. 131–134.
  21. B. Y. Yacheur, T. Ahmed, and M. Mosbah, “Analysis and Comparison of IEEE 802.11p and IEEE 802.11bd,” in Communication Technologies for Vehicles, F. Krief, H. Aniss, L. Mendiboure, S. Chaumette, and M. Berbineau, Eds.   Cham: Springer International Publishing, 2020, pp. 55–65.
  22. OMNeT++ Event Discrete Simulator. [Online]. Available: https://omnetpp.org/
  23. INET Framework. [Online]. Available: https://inet.omnetpp.org/
  24. C. Shao, S. Leng, Y. Zhang, A. Vinel, and M. Jonsson, “Performance analysis of connectivity probability and connectivity-aware mac protocol design for platoon-based vanets,” IEEE Transactions on Vehicular Technology, vol. 64, no. 12, pp. 5596–5609, 2015.
  25. M. Jonsson, K. Kunert, and A. Böhm, “Increased communication reliability for delay-sensitive platooning applications on top of ieee 802.11 p,” in Communication Technologies for Vehicles: 5th International Workshop, Nets4Cars/Nets4Trains 2013, Villeneuve d’Ascq, France, May 14-15, 2013. Proceedings 5.   Springer, 2013, pp. 121–135.
  26. P. Fernandes and U. Nunes, “Platooning with ivc-enabled autonomous vehicles: Strategies to mitigate communication delays, improve safety and traffic flow,” IEEE Transactions on Intelligent Transportation Systems, vol. 13, no. 1, pp. 91–106, 2012.
  27. M. Segata, B. Bloessl, S. Joerer, C. Sommer, M. Gerla, R. L. Cigno, and F. Dressler, “Towards inter-vehicle communication strategies for platooning support,” in 2014 7th International Workshop on Communication Technologies for Vehicles (Nets4Cars-Fall).   IEEE, 2014, pp. 1–6.
  28. Y. Park and H. Kim, “Collision control of periodic safety messages with strict messaging frequency requirements,” IEEE transactions on vehicular technology, vol. 62, no. 2, pp. 843–852, 2012.
  29. L. Cao, S. Roy, and H. Yin, “Resource allocation in 5g platoon communication: Modeling, analysis and optimization,” IEEE Transactions on Vehicular Technology, vol. 72, no. 4, pp. 5035–5048, 2022.
  30. H. Baniabdelghany, R. Obermaisser, and A. Khalifeh, “Extended synchronization protocol based on ieee802.1as for improved precision in dynamic and asymmetric tsn hybrid networks,” in 2020 9th Mediterranean Conference on Embedded Computing (MECO), 2020, pp. 1–8.
  31. K. Alemdar, D. Varshney, S. Mohanti, U. Muncuk, and K. Chowdhury, “Rfclock: timing, phase and frequency synchronization for distributed wireless networks,” in Proceedings of the 27th Annual International Conference on Mobile Computing and Networking, ser. MobiCom ’21.   New York, NY, USA: Association for Computing Machinery, 2021, p. 15–27. [Online]. Available: https://doi.org/10.1145/3447993.3448623
  32. A. Garg, A. Yadav, A. Sikora, and A. S. Sairam, “Wireless precision time protocol,” IEEE Communications Letters, vol. 22, no. 4, pp. 812–815, 2018.
  33. K. F. Hasan, Y. Feng, and Y.-C. Tian, “Gnss time synchronization in vehicular ad-hoc networks: Benefits and feasibility,” IEEE Transactions on Intelligent Transportation Systems, vol. 19, no. 12, pp. 3915–3924, 2018.
  34. V. Martinez and F. Berens, “Survey on its-g5 cam statistics,” CAR 2 CAR Communication Consortium, Tech. Rep., 12 2018. [Online]. Available: "https://www.car-2-car.org/fileadmin/documents/General_Documents/C2CCC_TR_2052_Survey_on_CAM_statistics.pdf"
  35. R. Molina-Masegosa, M. Sepulcre, J. Gozalvez, F. Berens, and V. Martinez, “Empirical models for the realistic generation of cooperative awareness messages in vehicular networks,” IEEE Transactions on Vehicular Technology, vol. 69, no. 5, pp. 5713–5717, 2020.
  36. M.-T. Thi, S. Guédon, S. B. H. Said, M. Boc, D. Miras, J.-B. Dore, M. Laugeois, X. Popon, and B. Miscopein, “Ieee 802.1 tsn time synchronization over wi-fi and 5g mobile networks,” in 2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall).   IEEE, 2022, pp. 1–7.
  37. T. Adame, M. Carrascosa-Zamacois, and B. Bellalta, “Time-sensitive networking in ieee 802.11 be: On the way to low-latency wifi 7,” Sensors, vol. 21, no. 15, p. 4954, 2021.
  38. 3GPP, “3rd generation partnership project;technical specification group radio access network;nr;study on nr vehicle-to-everything (v2x)(release 16),” 3GPP, Tech. Rep. TR 38.885 V16.0.0, 2019.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com