Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

No $ν$s is Good News (2405.00836v2)

Published 1 May 2024 in astro-ph.CO, hep-ph, and hep-th

Abstract: The baryon acoustic oscillation (BAO) analysis from the first year of data from the Dark Energy Spectroscopic Instrument (DESI), when combined with data from the cosmic microwave background (CMB), has placed an upper-limit on the sum of neutrino masses, $\sum m_\nu < 70$ meV (95%). In addition to excluding the minimum sum associated with the inverted hierarchy, the posterior is peaked at $\sum m_\nu = 0$ and is close to excluding even the minumum sum, 58 meV at 2$\sigma$. In this paper, we explore the implications of this data for cosmology and particle physics. The sum of neutrino mass is determined in cosmology from the suppression of clustering in the late universe. Allowing the clustering to be enhanced, we extended the DESI analysis to $\sum m_\nu < 0$ and find $\sum m_\nu = - 160 \pm 90$ meV (68%), and that the suppression of power from the minimum sum of neutrino masses is excluded at 99% confidence. We show this preference for negative masses makes it challenging to explain the result by a shift of cosmic parameters, such as the optical depth or matter density. We then show how a result of $\sum m_\nu =0$ could arise from new physics in the neutrino sector, including decay, cooling, and/or time-dependent masses. These models are consistent with current observations but imply new physics that is accessible in a wide range of experiments. In addition, we discuss how an apparent signal with $\sum m_\nu < 0$ can arise from new long range forces in the dark sector or from a primordial trispectrum that resembles the signal of CMB lensing.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (146)
  1. J. Lesgourgues and S. Pastor, “Massive neutrinos and cosmology,” Phys. Rept. 429 (2006) 307–379, arXiv:astro-ph/0603494.
  2. Topical Conveners: K.N. Abazajian, J.E. Carlstrom, A.T. Lee Collaboration, K. N. Abazajian et al., “Neutrino Physics from the Cosmic Microwave Background and Large Scale Structure,” Astropart. Phys. 63 (2015) 66–80, arXiv:1309.5383 [astro-ph.CO].
  3. C. Dvorkin et al., “Neutrino Mass from Cosmology: Probing Physics Beyond the Standard Model,” arXiv:1903.03689 [astro-ph.CO].
  4. Particle Data Group Collaboration, P. A. Zyla et al., “Review of Particle Physics,” PTEP 2020 no. 8, (2020) 083C01.
  5. A. Font-Ribera, P. McDonald, N. Mostek, B. A. Reid, H.-J. Seo, and A. Slosar, “DESI and other dark energy experiments in the era of neutrino mass measurements,” JCAP 05 (2014) 023, arXiv:1308.4164 [astro-ph.CO].
  6. CMB-S4 Collaboration, K. N. Abazajian et al., “CMB-S4 Science Book, First Edition,” arXiv:1610.02743 [astro-ph.CO].
  7. DESI Collaboration, A. Aghamousa et al., “The DESI Experiment Part I: Science,Targeting, and Survey Design,” arXiv:1611.00036 [astro-ph.IM].
  8. M. Kaplinghat, L. Knox, and Y.-S. Song, “Determining neutrino mass from the CMB alone,” Phys. Rev. Lett. 91 (2003) 241301, arXiv:astro-ph/0303344.
  9. Z. Pan and L. Knox, “Constraints on neutrino mass from Cosmic Microwave Background and Large Scale Structure,” Mon. Not. Roy. Astron. Soc. 454 no. 3, (2015) 3200–3206, arXiv:1506.07493 [astro-ph.CO].
  10. DESI Collaboration, A. G. Adame et al., “DESI 2024 VI: Cosmological Constraints from the Measurements of Baryon Acoustic Oscillations,” arXiv:2404.03002 [astro-ph.CO].
  11. Planck Collaboration, N. Aghanim et al., “Planck 2018 results. V. CMB power spectra and likelihoods,” Astron. Astrophys. 641 (2020) A5, arXiv:1907.12875 [astro-ph.CO].
  12. J. Carron, M. Mirmelstein, and A. Lewis, “CMB lensing from Planck PR4 maps,” JCAP 09 (2022) 039, arXiv:2206.07773 [astro-ph.CO].
  13. ACT Collaboration, F. J. Qu et al., “The Atacama Cosmology Telescope: A Measurement of the DR6 CMB Lensing Power Spectrum and Its Implications for Structure Growth,” Astrophys. J. 962 no. 2, (2024) 112, arXiv:2304.05202 [astro-ph.CO].
  14. ACT Collaboration, M. S. Madhavacheril et al., “The Atacama Cosmology Telescope: DR6 Gravitational Lensing Map and Cosmological Parameters,” Astrophys. J. 962 no. 2, (2024) 113, arXiv:2304.05203 [astro-ph.CO].
  15. S. Brieden, H. Gil-Marín, and L. Verde, “Model-agnostic interpretation of 10 billion years of cosmic evolution traced by BOSS and eBOSS data,” JCAP 08 no. 08, (2022) 024, arXiv:2204.11868 [astro-ph.CO].
  16. N. Palanque-Delabrouille, C. Yèche, N. Schöneberg, J. Lesgourgues, M. Walther, S. Chabanier, and E. Armengaud, “Hints, neutrino bounds and WDM constraints from SDSS DR14 Lyman-α𝛼\alphaitalic_α and Planck full-survey data,” JCAP 04 (2020) 038, arXiv:1911.09073 [astro-ph.CO].
  17. Planck Collaboration, N. Aghanim et al., “Planck 2018 results. VI. Cosmological parameters,” Astron. Astrophys. 641 (2020) A6, arXiv:1807.06209 [astro-ph.CO]. [Erratum: Astron.Astrophys. 652, C4 (2021)].
  18. B. Follin, L. Knox, M. Millea, and Z. Pan, “First Detection of the Acoustic Oscillation Phase Shift Expected from the Cosmic Neutrino Background,” Phys. Rev. Lett. 115 no. 9, (2015) 091301, arXiv:1503.07863 [astro-ph.CO].
  19. D. Baumann, D. Green, J. Meyers, and B. Wallisch, “Phases of New Physics in the CMB,” JCAP 01 (2016) 007, arXiv:1508.06342 [astro-ph.CO].
  20. D. Baumann, F. Beutler, R. Flauger, D. Green, A. Slosar, M. Vargas-Magaña, B. Wallisch, and C. Yèche, “First constraint on the neutrino-induced phase shift in the spectrum of baryon acoustic oscillations,” Nature Phys. 15 (2019) 465–469, arXiv:1803.10741 [astro-ph.CO].
  21. F.-Y. Cyr-Racine and K. Sigurdson, “Limits on Neutrino-Neutrino Scattering in the Early Universe,” Phys. Rev. D 90 no. 12, (2014) 123533, arXiv:1306.1536 [astro-ph.CO].
  22. L. Lancaster, F.-Y. Cyr-Racine, L. Knox, and Z. Pan, “A tale of two modes: Neutrino free-streaming in the early universe,” JCAP 07 (2017) 033, arXiv:1704.06657 [astro-ph.CO].
  23. A. He, R. An, M. M. Ivanov, and V. Gluscevic, “Self-Interacting Neutrinos in Light of Large-Scale Structure Data,” arXiv:2309.03956 [astro-ph.CO].
  24. D. Camarena, F.-Y. Cyr-Racine, and J. Houghteling, “Confronting self-interacting neutrinos with the full shape of the galaxy power spectrum,” Phys. Rev. D 108 no. 10, (2023) 103535, arXiv:2309.03941 [astro-ph.CO].
  25. D. Camarena and F.-Y. Cyr-Racine, “Absence of concordance in a simple self-interacting neutrino cosmology,” arXiv:2403.05496 [astro-ph.CO].
  26. D. Green and J. Meyers, “Cosmological Implications of a Neutrino Mass Detection,” arXiv:2111.01096 [astro-ph.CO].
  27. D. Green, “Cosmic Signals of Fundamental Physics,” PoS TASI2022 (2024) 005, arXiv:2212.08685 [hep-ph].
  28. A. Lewis and A. Challinor, “Weak gravitational lensing of the CMB,” Phys. Rept. 429 (2006) 1–65, arXiv:astro-ph/0601594.
  29. A. Lewis, A. Challinor, and A. Lasenby, “Efficient Computation of CMB Anisotropies in Closed FRW Models,” Astrophys. J. 538 (2000) 473, arXiv:astro-ph/9911177.
  30. C. Howlett, A. Lewis, A. Hall, and A. Challinor, “CMB power spectrum parameter degeneracies in the era of precision cosmology,” JCAP 1204 (2012) 027, arXiv:1201.3654 [astro-ph.CO]. https://arxiv.org/abs/1201.3654.
  31. D. Blas, J. Lesgourgues, and T. Tram, “The Cosmic Linear Anisotropy Solving System (CLASS) II: Approximation Schemes,” JCAP 07 (2011) 034, arXiv:1104.2933 [astro-ph.CO].
  32. DESI Collaboration, A. G. Adame et al., “DESI 2024 IV: Baryon Acoustic Oscillations from the Lyman Alpha Forest,” arXiv:2404.03001 [astro-ph.CO].
  33. DESI Collaboration, A. G. Adame et al., “DESI 2024 III: Baryon Acoustic Oscillations from Galaxies and Quasars,” arXiv:2404.03000 [astro-ph.CO].
  34. J. Torrado and A. Lewis, “Cobaya: Code for Bayesian Analysis of hierarchical physical models,” JCAP 05 (2021) 057, arXiv:2005.05290 [astro-ph.IM].
  35. A. Lewis and S. Bridle, “Cosmological parameters from CMB and other data: A Monte Carlo approach,” Phys. Rev. D66 (2002) 103511, arXiv:astro-ph/0205436 [astro-ph]. https://arxiv.org/abs/astro-ph/0205436.
  36. A. Lewis, “Efficient sampling of fast and slow cosmological parameters,” Phys. Rev. D87 no. 10, (2013) 103529, arXiv:1304.4473 [astro-ph.CO]. https://arxiv.org/abs/1304.4473.
  37. R. M. Neal, “Taking Bigger Metropolis Steps by Dragging Fast Variables,” ArXiv Mathematics e-prints (Feb., 2005) , math/0502099. https://arxiv.org/abs/math/0502099.
  38. E. Abdalla et al., “Cosmology intertwined: A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies,” JHEAp 34 (2022) 49–211, arXiv:2203.06142 [astro-ph.CO].
  39. WMAP Collaboration, C. L. Bennett et al., “First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Preliminary maps and basic results,” Astrophys. J. Suppl. 148 (2003) 1–27, arXiv:astro-ph/0302207.
  40. WMAP Collaboration, D. N. Spergel et al., “Wilkinson Microwave Anisotropy Probe (WMAP) three year results: implications for cosmology,” Astrophys. J. Suppl. 170 (2007) 377, arXiv:astro-ph/0603449.
  41. WMAP Collaboration, E. Komatsu et al., “Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation,” Astrophys. J. Suppl. 180 (2009) 330–376, arXiv:0803.0547 [astro-ph].
  42. WMAP Collaboration, E. Komatsu et al., “Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation,” Astrophys. J. Suppl. 192 (2011) 18, arXiv:1001.4538 [astro-ph.CO].
  43. WMAP Collaboration, G. Hinshaw et al., “Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results,” Astrophys. J. Suppl. 208 (2013) 19, arXiv:1212.5226 [astro-ph.CO].
  44. Planck Collaboration, P. A. R. Ade et al., “Planck 2013 results. XVI. Cosmological parameters,” Astron. Astrophys. 571 (2014) A16, arXiv:1303.5076 [astro-ph.CO].
  45. Planck Collaboration, P. A. R. Ade et al., “Planck 2015 results. XIII. Cosmological parameters,” Astron. Astrophys. 594 (2016) A13, arXiv:1502.01589 [astro-ph.CO].
  46. Planck Collaboration, Y. Akrami et al., “P⁢l⁢a⁢n⁢c⁢k𝑃𝑙𝑎𝑛𝑐𝑘Planckitalic_P italic_l italic_a italic_n italic_c italic_k intermediate results. LVII. Joint Planck LFI and HFI data processing,” Astron. Astrophys. 643 (2020) A42, arXiv:2007.04997 [astro-ph.CO].
  47. M. Tristram et al., “Cosmological parameters derived from the final Planck data release (PR4),” Astron. Astrophys. 682 (2024) A37, arXiv:2309.10034 [astro-ph.CO].
  48. T. Essinger-Hileman et al., “CLASS: The Cosmology Large Angular Scale Surveyor,” Proc. SPIE Int. Soc. Opt. Eng. 9153 (2014) 91531I, arXiv:1408.4788 [astro-ph.IM].
  49. J. R. Eimer et al., “CLASS Angular Power Spectra and Map-component Analysis for 40 GHz Observations through 2022,” Astrophys. J. 963 no. 2, (2024) 92, arXiv:2309.00675 [astro-ph.CO].
  50. LiteBIRD Collaboration, E. Allys et al., “Probing Cosmic Inflation with the LiteBIRD Cosmic Microwave Background Polarization Survey,” PTEP 2023 no. 4, (2023) 042F01, arXiv:2202.02773 [astro-ph.IM].
  51. J. Errard, M. Remazeilles, J. Aumont, J. Delabrouille, D. Green, S. Hanany, B. S. Hensley, and A. Kogut, “Constraints on the Optical Depth to Reionization from Balloon-borne Cosmic Microwave Background Measurements,” Astrophys. J. 940 no. 1, (2022) 68, arXiv:2206.03389 [astro-ph.CO].
  52. B. Yu, R. Z. Knight, B. D. Sherwin, S. Ferraro, L. Knox, and M. Schmittfull, “Toward neutrino mass from cosmology without optical depth information,” Phys. Rev. D 107 no. 12, (2023) 123522, arXiv:1809.02120 [astro-ph.CO].
  53. T. Brinckmann, D. C. Hooper, M. Archidiacono, J. Lesgourgues, and T. Sprenger, “The promising future of a robust cosmological neutrino mass measurement,” JCAP 01 (2019) 059, arXiv:1808.05955 [astro-ph.CO].
  54. K. M. Smith and S. Ferraro, “Detecting Patchy Reionization in the Cosmic Microwave Background,” Phys. Rev. Lett. 119 no. 2, (2017) 021301, arXiv:1607.01769 [astro-ph.CO].
  55. S. Ferraro and K. M. Smith, “Characterizing the epoch of reionization with the small-scale CMB: Constraints on the optical depth and duration,” Phys. Rev. D 98 no. 12, (2018) 123519, arXiv:1803.07036 [astro-ph.CO].
  56. M. A. Alvarez, S. Ferraro, J. C. Hill, R. Hlovzek, and M. Ikape, “Mitigating the optical depth degeneracy using the kinematic Sunyaev-Zel’dovich effect with CMB-S4,” Phys. Rev. D 103 no. 6, (2021) 063518, arXiv:2006.06594 [astro-ph.CO].
  57. K. Abazajian et al., “CMB-S4 Science Case, Reference Design, and Project Plan,” arXiv:1907.04473 [astro-ph.IM].
  58. R. Allison, P. Caucal, E. Calabrese, J. Dunkley, and T. Louis, “Towards a cosmological neutrino mass detection,” Phys. Rev. D 92 no. 12, (2015) 123535, arXiv:1509.07471 [astro-ph.CO].
  59. K. V. Berghaus, J. A. Kable, and V. Miranda, “Quantifying Scalar Field Dynamics with DESI 2024 Y1 BAO measurements,” arXiv:2404.14341 [astro-ph.CO].
  60. W. Hu and T. Okamoto, “Mass reconstruction with cmb polarization,” Astrophys. J. 574 (2002) 566–574, arXiv:astro-ph/0111606.
  61. U. Seljak and C. M. Hirata, “Gravitational lensing as a contaminant of the gravity wave signal in CMB,” Phys. Rev. D 69 (2004) 043005, arXiv:astro-ph/0310163.
  62. D. Green, J. Meyers, and A. van Engelen, “CMB Delensing Beyond the B Modes,” JCAP 12 (2017) 005, arXiv:1609.08143 [astro-ph.CO].
  63. S. C. Hotinli, J. Meyers, C. Trendafilova, D. Green, and A. van Engelen, “The benefits of CMB delensing,” JCAP 04 no. 04, (2022) 020, arXiv:2111.15036 [astro-ph.CO].
  64. A. van Engelen, S. Bhattacharya, N. Sehgal, G. P. Holder, O. Zahn, and D. Nagai, “CMB Lensing Power Spectrum Biases from Galaxies and Clusters using High-angular Resolution Temperature Maps,” Astrophys. J. 786 (2014) 13, arXiv:1310.7023 [astro-ph.CO].
  65. J. L. Aalberts et al., “Precision constraints on radiative neutrino decay with CMB spectral distortion,” Phys. Rev. D 98 (2018) 023001, arXiv:1803.00588 [astro-ph.CO].
  66. G. Barenboim, J. Z. Chen, S. Hannestad, I. M. Oldengott, T. Tram, and Y. Y. Y. Wong, “Invisible neutrino decay in precision cosmology,” JCAP 03 (2021) 087, arXiv:2011.01502 [astro-ph.CO].
  67. Z. Chacko, A. Dev, P. Du, V. Poulin, and Y. Tsai, “Cosmological Limits on the Neutrino Mass and Lifetime,” JHEP 04 (2020) 020, arXiv:1909.05275 [hep-ph].
  68. Z. Chacko, A. Dev, P. Du, V. Poulin, and Y. Tsai, “Determining the Neutrino Lifetime from Cosmology,” Phys. Rev. D 103 no. 4, (2021) 043519, arXiv:2002.08401 [astro-ph.CO].
  69. M. Escudero, J. Lopez-Pavon, N. Rius, and S. Sandner, “Relaxing Cosmological Neutrino Mass Bounds with Unstable Neutrinos,” JHEP 12 (2020) 119, arXiv:2007.04994 [hep-ph].
  70. G. Franco Abellán, Z. Chacko, A. Dev, P. Du, V. Poulin, and Y. Tsai, “Improved cosmological constraints on the neutrino mass and lifetime,” JHEP 08 (2022) 076, arXiv:2112.13862 [hep-ph].
  71. KATRIN Collaboration, M. Aker et al., “Direct neutrino-mass measurement with sub-electronvolt sensitivity,” Nature Phys. 18 no. 2, (2022) 160–166, arXiv:2105.08533 [hep-ex].
  72. Y. Farzan, “Bounds on the coupling of the Majoron to light neutrinos from supernova cooling,” Phys. Rev. D 67 (2003) 073015, arXiv:hep-ph/0211375.
  73. Z. Chacko, L. J. Hall, T. Okui, and S. J. Oliver, “CMB signals of neutrino mass generation,” Phys. Rev. D 70 (2004) 085008, arXiv:hep-ph/0312267.
  74. A. Friedland, K. M. Zurek, and S. Bashinsky, “Constraining Models of Neutrino Mass and Neutrino Interactions with the Planck Satellite,” arXiv:0704.3271 [astro-ph].
  75. M. Archidiacono and S. Hannestad, “Updated constraints on non-standard neutrino interactions from Planck,” JCAP 07 (2014) 046, arXiv:1311.3873 [astro-ph.CO].
  76. D. Baumann, D. Green, and B. Wallisch, “New Target for Cosmic Axion Searches,” Phys. Rev. Lett. 117 no. 17, (2016) 171301, arXiv:1604.08614 [astro-ph.CO].
  77. G. B. Gelmini and J. W. F. Valle, “Fast Invisible Neutrino Decays,” Phys. Lett. B 142 (1984) 181–187.
  78. M. Ekhterachian, A. Hook, S. Kumar, and Y. Tsai, “Bounds on gauge bosons coupled to nonconserved currents,” Phys. Rev. D 104 no. 3, (2021) 035034, arXiv:2103.13396 [hep-ph].
  79. J. F. Beacom, N. F. Bell, and S. Dodelson, “Neutrinoless universe,” Phys. Rev. Lett. 93 (2004) 121302, arXiv:astro-ph/0404585.
  80. Y. Farzan and S. Hannestad, “Neutrinos secretly converting to lighter particles to please both KATRIN and the cosmos,” JCAP 02 (2016) 058, arXiv:1510.02201 [hep-ph].
  81. G. Mangano, G. Miele, S. Pastor, T. Pinto, O. Pisanti, and P. D. Serpico, “Relic neutrino decoupling including flavor oscillations,” Nucl. Phys. B 729 (2005) 221–234, arXiv:hep-ph/0506164.
  82. M. Escudero Abenza, “Precision early universe thermodynamics made simple: Neffsubscript𝑁effN_{\rm eff}italic_N start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT and neutrino decoupling in the Standard Model and beyond,” JCAP 05 (2020) 048, arXiv:2001.04466 [hep-ph].
  83. K. Akita and M. Yamaguchi, “A precision calculation of relic neutrino decoupling,” JCAP 08 (2020) 012, arXiv:2005.07047 [hep-ph].
  84. J. Froustey, C. Pitrou, and M. C. Volpe, “Neutrino decoupling including flavour oscillations and primordial nucleosynthesis,” JCAP 12 (2020) 015, arXiv:2008.01074 [hep-ph].
  85. J. J. Bennett, G. Buldgen, P. F. De Salas, M. Drewes, S. Gariazzo, S. Pastor, and Y. Y. Y. Wong, “Towards a precision calculation of Neffsubscript𝑁effN_{\rm eff}italic_N start_POSTSUBSCRIPT roman_eff end_POSTSUBSCRIPT in the Standard Model II: Neutrino decoupling in the presence of flavour oscillations and finite-temperature QED,” JCAP 04 (2021) 073, arXiv:2012.02726 [hep-ph].
  86. J. R. Bond, G. M. Fuller, E. Grohs, J. Meyers, and M. J. Wilson, “Cosmic Neutrino Decoupling and its Observable Imprints: Insights from Entropic-Dual Transport,” arXiv:2403.19038 [astro-ph.CO].
  87. B. D. Fields, K. A. Olive, T.-H. Yeh, and C. Young, “Big-Bang Nucleosynthesis after Planck,” JCAP 03 (2020) 010, arXiv:1912.01132 [astro-ph.CO]. [Erratum: JCAP 11, E02 (2020)].
  88. D. Green, D. E. Kaplan, and S. Rajendran, “Neutrino interactions in the late universe,” JHEP 11 (2021) 162, arXiv:2108.06928 [hep-ph].
  89. K. M. Nollett and G. Steigman, “BBN And The CMB Constrain Neutrino Coupled Light WIMPs,” Phys. Rev. D 91 no. 8, (2015) 083505, arXiv:1411.6005 [astro-ph.CO].
  90. SDSS Collaboration, P. McDonald et al., “The Lyman-alpha forest power spectrum from the Sloan Digital Sky Survey,” Astrophys. J. Suppl. 163 (2006) 80–109, arXiv:astro-ph/0405013.
  91. M. Viel, J. Lesgourgues, M. G. Haehnelt, S. Matarrese, and A. Riotto, “Constraining warm dark matter candidates including sterile neutrinos and light gravitinos with WMAP and the Lyman-alpha forest,” Phys. Rev. D 71 (2005) 063534, arXiv:astro-ph/0501562.
  92. A. Boyarsky, J. Lesgourgues, O. Ruchayskiy, and M. Viel, “Lyman-alpha constraints on warm and on warm-plus-cold dark matter models,” JCAP 05 (2009) 012, arXiv:0812.0010 [astro-ph].
  93. W. L. Xu, C. Dvorkin, and A. Chael, “Probing sub-GeV Dark Matter-Baryon Scattering with Cosmological Observables,” Phys. Rev. D 97 no. 10, (2018) 103530, arXiv:1802.06788 [astro-ph.CO].
  94. E. O. Nadler, V. Gluscevic, K. K. Boddy, and R. H. Wechsler, “Constraints on Dark Matter Microphysics from the Milky Way Satellite Population,” Astrophys. J. Lett. 878 no. 2, (2019) 32, arXiv:1904.10000 [astro-ph.CO]. [Erratum: Astrophys.J.Lett. 897, L46 (2020), Erratum: Astrophys.J. 897, L46 (2020)].
  95. K. Maamari, V. Gluscevic, K. K. Boddy, E. O. Nadler, and R. H. Wechsler, “Bounds on velocity-dependent dark matter-proton scattering from Milky Way satellite abundance,” Astrophys. J. Lett. 907 no. 2, (2021) L46, arXiv:2010.02936 [astro-ph.CO].
  96. L. Kofman, D. Pogosyan, and A. A. Starobinsky, “The large scale microwave backbround anisotropy in unstable cosmologies,” Sov. Astron. Lett. 12 (1986) 175–179.
  97. S. De Lope Amigo, W. M.-Y. Cheung, Z. Huang, and S.-P. Ng, “Cosmological Constraints on Decaying Dark Matter,” JCAP 06 (2009) 005, arXiv:0812.4016 [hep-ph].
  98. B. Audren, J. Lesgourgues, G. Mangano, P. D. Serpico, and T. Tram, “Strongest model-independent bound on the lifetime of Dark Matter,” JCAP 12 (2014) 028, arXiv:1407.2418 [astro-ph.CO].
  99. V. Poulin, P. D. Serpico, and J. Lesgourgues, “A fresh look at linear cosmological constraints on a decaying dark matter component,” JCAP 08 (2016) 036, arXiv:1606.02073 [astro-ph.CO].
  100. R. Fardon, A. E. Nelson, and N. Weiner, “Dark energy from mass varying neutrinos,” JCAP 10 (2004) 005, arXiv:astro-ph/0309800.
  101. C. S. Lorenz, L. Funcke, E. Calabrese, and S. Hannestad, “Time-varying neutrino mass from a supercooled phase transition: current cosmological constraints and impact on the ΩmsubscriptΩ𝑚\Omega_{m}roman_Ω start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT-σ8subscript𝜎8\sigma_{8}italic_σ start_POSTSUBSCRIPT 8 end_POSTSUBSCRIPT plane,” Phys. Rev. D 99 no. 2, (2019) 023501, arXiv:1811.01991 [astro-ph.CO].
  102. C. S. Lorenz, L. Funcke, M. Löffler, and E. Calabrese, “Reconstruction of the neutrino mass as a function of redshift,” Phys. Rev. D 104 no. 12, (2021) 123518, arXiv:2102.13618 [astro-ph.CO].
  103. F.-Y. Cyr-Racine, F. Ge, and L. Knox, “Symmetry of Cosmological Observables, a Mirror World Dark Sector, and the Hubble Constant,” Phys. Rev. Lett. 128 no. 20, (2022) 201301, arXiv:2107.13000 [astro-ph.CO].
  104. F. Ge, F.-Y. Cyr-Racine, and L. Knox, “Scaling transformations and the origins of light relics constraints from cosmic microwave background observations,” Phys. Rev. D 107 no. 2, (2023) 023517, arXiv:2210.16335 [astro-ph.CO].
  105. N. Arkani-Hamed, T. Cohen, R. T. D’Agnolo, A. Hook, H. D. Kim, and D. Pinner, “Solving the Hierarchy Problem at Reheating with a Large Number of Degrees of Freedom,” Phys. Rev. Lett. 117 no. 25, (2016) 251801, arXiv:1607.06821 [hep-ph].
  106. Z. Chacko, N. Craig, P. J. Fox, and R. Harnik, “Cosmology in Mirror Twin Higgs and Neutrino Masses,” JHEP 07 (2017) 023, arXiv:1611.07975 [hep-ph].
  107. Z. Chacko, D. Curtin, M. Geller, and Y. Tsai, “Cosmological Signatures of a Mirror Twin Higgs,” JHEP 09 (2018) 163, arXiv:1803.03263 [hep-ph].
  108. C. M. Will, “The Confrontation between General Relativity and Experiment,” Living Rev. Rel. 17 (2014) 4, arXiv:1403.7377 [gr-qc].
  109. M. Kesden and M. Kamionkowski, “Galilean Equivalence for Galactic Dark Matter,” Phys. Rev. Lett. 97 (2006) 131303, arXiv:astro-ph/0606566.
  110. M. Kesden and M. Kamionkowski, “Tidal Tails Test the Equivalence Principle in the Dark Sector,” Phys. Rev. D 74 (2006) 083007, arXiv:astro-ph/0608095.
  111. J. A. Keselman, A. Nusser, and P. J. E. Peebles, “Cosmology with Equivalence Principle Breaking in the Dark Sector,” Phys. Rev. D 81 (2010) 063521, arXiv:0912.4177 [astro-ph.CO].
  112. Z. Bogorad, P. W. Graham, and H. Ramani, “Coherent Self-Interactions of Dark Matter in the Bullet Cluster,” arXiv:2311.07648 [hep-ph].
  113. M. Archidiacono, E. Castorina, D. Redigolo, and E. Salvioni, “Unveiling dark fifth forces with linear cosmology,” JCAP 10 (2022) 074, arXiv:2204.08484 [astro-ph.CO].
  114. S. Bottaro, E. Castorina, M. Costa, D. Redigolo, and E. Salvioni, “Unveiling dark forces with the Large Scale Structure of the Universe,” arXiv:2309.11496 [astro-ph.CO].
  115. P. Creminelli, J. Noreña, M. Simonović, and F. Vernizzi, “Single-Field Consistency Relations of Large Scale Structure,” JCAP 12 (2013) 025, arXiv:1309.3557 [astro-ph.CO].
  116. P. Creminelli, J. Gleyzes, M. Simonović, and F. Vernizzi, “Single-Field Consistency Relations of Large Scale Structure. Part II: Resummation and Redshift Space,” JCAP 02 (2014) 051, arXiv:1311.0290 [astro-ph.CO].
  117. P. Creminelli, J. Gleyzes, L. Hui, M. Simonović, and F. Vernizzi, “Single-Field Consistency Relations of Large Scale Structure. Part III: Test of the Equivalence Principle,” JCAP 06 (2014) 009, arXiv:1312.6074 [astro-ph.CO].
  118. F. Saracco, M. Pietroni, N. Tetradis, V. Pettorino, and G. Robbers, “Non-linear Matter Spectra in Coupled Quintessence,” Phys. Rev. D 82 (2010) 023528, arXiv:0911.5396 [astro-ph.CO].
  119. Y. Bai, S. Lu, and N. Orlofsky, “Gravitational Waves From More Attractive Dark Binaries,” arXiv:2312.13378 [astro-ph.CO].
  120. W. Hu, “Angular trispectrum of the CMB,” Phys. Rev. D 64 (2001) 083005, arXiv:astro-ph/0105117.
  121. T. Okamoto and W. Hu, “The angular trispectra of CMB temperature and polarization,” Phys. Rev. D 66 (2002) 063008, arXiv:astro-ph/0206155.
  122. D. Hanson and A. Lewis, “Estimators for CMB Statistical Anisotropy,” Phys. Rev. D 80 (2009) 063004, arXiv:0908.0963 [astro-ph.CO].
  123. K. Marzouk, A. Lewis, and J. Carron, “Constraints on τN⁢Lsubscript𝜏𝑁𝐿\tau_{NL}italic_τ start_POSTSUBSCRIPT italic_N italic_L end_POSTSUBSCRIPT from Planck temperature and polarization,” JCAP 08 no. 08, (2022) 015, arXiv:2205.14408 [astro-ph.CO].
  124. K. M. Smith, L. Senatore, and M. Zaldarriaga, “Optimal analysis of the CMB trispectrum,” arXiv:1502.00635 [astro-ph.CO].
  125. K. M. Smith, M. LoVerde, and M. Zaldarriaga, “A universal bound on N-point correlations from inflation,” Phys. Rev. Lett. 107 (2011) 191301, arXiv:1108.1805 [astro-ph.CO].
  126. D. Green, Y. Huang, C.-H. Shen, and D. Baumann, “Positivity from Cosmological Correlators,” JHEP 04 (2024) 034, arXiv:2310.02490 [hep-th].
  127. Planck Collaboration, Y. Akrami et al., “Planck 2018 results. IX. Constraints on primordial non-Gaussianity,” Astron. Astrophys. 641 (2020) A9, arXiv:1905.05697 [astro-ph.CO].
  128. S. Ferraro and K. M. Smith, “Using large scale structure to measure fN⁢L,gN⁢Lsubscript𝑓𝑁𝐿subscript𝑔𝑁𝐿f_{NL},g_{NL}italic_f start_POSTSUBSCRIPT italic_N italic_L end_POSTSUBSCRIPT , italic_g start_POSTSUBSCRIPT italic_N italic_L end_POSTSUBSCRIPT and τN⁢Lsubscript𝜏𝑁𝐿\tau_{NL}italic_τ start_POSTSUBSCRIPT italic_N italic_L end_POSTSUBSCRIPT,” Phys. Rev. D 91 no. 4, (2015) 043506, arXiv:1408.3126 [astro-ph.CO].
  129. J.-O. Gong and S. Yokoyama, “Scale dependent bias from primordial non-Gaussianity with trispectrum,” Mon. Not. Roy. Astron. Soc. 417 (2011) 79, arXiv:1106.4404 [astro-ph.CO].
  130. D. Baumann, S. Ferraro, D. Green, and K. M. Smith, “Stochastic Bias from Non-Gaussian Initial Conditions,” JCAP 05 (2013) 001, arXiv:1209.2173 [astro-ph.CO].
  131. N. Anil Kumar, G. Sato-Polito, M. Kamionkowski, and S. C. Hotinli, “Primordial trispectrum from kinetic Sunyaev-Zel’dovich tomography,” Phys. Rev. D 106 no. 6, (2022) 063533, arXiv:2205.03423 [astro-ph.CO].
  132. Planck Collaboration, N. Aghanim et al., “Planck 2018 results. VIII. Gravitational lensing,” Astron. Astrophys. 641 (2020) A8, arXiv:1807.06210 [astro-ph.CO].
  133. D. Green, Y. Guo, J. Han, and B. Wallisch, “Light Fields during Inflation from BOSS and Future Galaxy Surveys,” arXiv:2311.04882 [astro-ph.CO].
  134. EUCLID Collaboration, R. Laureijs et al., “Euclid Definition Study Report,” arXiv:1110.3193 [astro-ph.CO].
  135. SPHEREx Collaboration, O. Doré et al., “Cosmology with the SPHEREX All-Sky Spectral Survey,” arXiv:1412.4872 [astro-ph.CO].
  136. C. Shiveshwarkar, T. Brinckmann, and M. Loverde, “Constraining general multi-field inflation using the SPHEREx all-sky survey,” arXiv:2312.15038 [astro-ph.CO].
  137. D. Green, “Disorder in the Early Universe,” JCAP 03 (2015) 020, arXiv:1409.6698 [hep-th].
  138. M. Forconi, E. Di Valentino, A. Melchiorri, and S. Pan, “A Possible Impact of Non-Gaussianities on Cosmological Constraints in Neutrino Physics,” arXiv:2311.04038 [astro-ph.CO].
  139. M. Takada and W. Hu, “Power Spectrum Super-Sample Covariance,” Phys. Rev. D 87 no. 12, (2013) 123504, arXiv:1302.6994 [astro-ph.CO].
  140. W. L. Xu, J. B. Muñoz, and C. Dvorkin, “Cosmological constraints on light but massive relics,” Phys. Rev. D 105 no. 9, (2022) 095029, arXiv:2107.09664 [astro-ph.CO].
  141. T. Moroi, H. Murayama, and M. Yamaguchi, “Cosmological constraints on the light stable gravitino,” Phys. Lett. B 303 (1993) 289–294.
  142. K. Osato, T. Sekiguchi, M. Shirasaki, A. Kamada, and N. Yoshida, “Cosmological Constraint on the Light Gravitino Mass from CMB Lensing and Cosmic Shear,” JCAP 06 (2016) 004, arXiv:1601.07386 [astro-ph.CO].
  143. F. Pérez and B. Granger, “IPython: A System for Interactive Scientific Computing,” Comput. Sci. Eng. 9 (2007) 21.
  144. J. Hunter, “Matplotlib: A 2D Graphics Environment,” Comput. Sci. Eng. 9 (2007) 90.
  145. C. Harris et al., “Array Programming with NumPy,” Nature 585 (2020) 3572, arXiv:2006.10256 [cs.MS].
  146. P. Virtanen et al., “SciPy 1.0 – Fundamental Algorithms for Scientific Computing in Python,” Nat. Methods 17 (2020) 261, arXiv:1907.10121 [cs.MS].
Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.