Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 181 tok/s Pro
2000 character limit reached

Astrophysical constraints from synchrotron emission on very massive decaying dark matter (2405.00798v2)

Published 1 May 2024 in hep-ph and astro-ph.HE

Abstract: If the cosmological dark matter (DM) couples to Standard Model (SM) fields, it can decay promptly to SM states in a highly energetic hard process, which subsequently showers and hadronizes to give stable particles including $e\pm$, $\gamma$, $p{\pm}$ and $\nu\bar{\nu}$ at lower energy. If the DM particle is very heavy, the high-energy $e\pm$, due to the Klein-Nishina cross section suppression, preferentially lose energy via synchrotron emission which, in turn, can be of unusually high energies. Here, we present previously unexplored bounds on heavy decaying DM up to the Planck scale, by studying the synchrotron emission from the $e\pm$ produced in the ambient Galactic magnetic field. In particular, we explore the sensitivity of the resulting constraints on the DM decay width to (i) different SM decay channels, to (ii) the Galactic magnetic field configurations, and (iii) to various different DM density profiles proposed in the literature. We find that constraints from the synchrotron component complement and improve on constraints from very high-energy cosmic-ray and gamma-ray observatories targeting the prompt emission when the DM is sufficiently massive, most significantly for masses in excess of $10{12}\text{ GeV}$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (64)
  1. Vivian Poulin, Pasquale D. Serpico,  and Julien Lesgourgues, “A fresh look at linear cosmological constraints on a decaying dark matter component,” JCAP 08, 036 (2016), arXiv:1606.02073 [astro-ph.CO] .
  2. Benjamin Audren, Julien Lesgourgues, Gianpiero Mangano, Pasquale Dario Serpico,  and Thomas Tram, “Strongest model-independent bound on the lifetime of Dark Matter,” JCAP 12, 028 (2014), arXiv:1407.2418 [astro-ph.CO] .
  3. Christian W. Bauer, Nicholas L. Rodd,  and Bryan R. Webber, “Dark matter spectra from the electroweak to the Planck scale,” JHEP 06, 121 (2021), arXiv:2007.15001 [hep-ph] .
  4. Tracy R. Slatyer, “Les Houches Lectures on Indirect Detection of Dark Matter,” SciPost Phys. Lect. Notes 53, 1 (2022), arXiv:2109.02696 [hep-ph] .
  5. Xiaoyuan Huang, Gilles Vertongen,  and Christoph Weniger, “Probing Dark Matter Decay and Annihilation with Fermi LAT Observations of Nearby Galaxy Clusters,” JCAP 01, 042 (2012), arXiv:1110.1529 [hep-ph] .
  6. Deheng Song, Kohta Murase,  and Ali Kheirandish, “Constraining decaying very heavy dark matter from galaxy clusters with 14 year Fermi-LAT data,”   (2023), arXiv:2308.00589 [astro-ph.HE] .
  7. M. Ackermann et al. (Fermi-LAT), “Fermi-LAT Observations of the Diffuse Gamma-Ray Emission: Implications for Cosmic Rays and the Interstellar Medium,” Astrophys. J. 750, 3 (2012), arXiv:1202.4039 [astro-ph.HE] .
  8. Roberto Aloisio (Pierre Auger), “Pierre Auger Observatory and Super Heavy Dark Matter,” EPJ Web Conf. 280, 07001 (2023), arXiv:2212.10476 [astro-ph.HE] .
  9. A. U. Abeysekara et al. (HAWC), “A Search for Dark Matter in the Galactic Halo with HAWC,” JCAP 02, 049 (2018), arXiv:1710.10288 [astro-ph.HE] .
  10. A. Albert et al., “Search for Decaying Dark Matter in the Virgo Cluster of Galaxies with HAWC,”   (2023), arXiv:2309.03973 [astro-ph.HE] .
  11. Zhen Cao et al. (LHAASO), “Constraints on Heavy Decaying Dark Matter from 570 Days of LHAASO Observations,” Phys. Rev. Lett. 129, 261103 (2022), arXiv:2210.15989 [astro-ph.HE] .
  12. M. G. Aartsen et al. (IceCube), “Search for neutrinos from decaying dark matter with IceCube,” Eur. Phys. J. C 78, 831 (2018), arXiv:1804.03848 [astro-ph.HE] .
  13. Rasha Abbasi et al. (IceCube), “Search for Dark Matter Decay in Nearby Galaxy Clusters and Galaxies with IceCube,” PoS ICRC2023, 1378 (2023), arXiv:2308.04833 [astro-ph.HE] .
  14. Arman Esmaili and Pasquale Dario Serpico, “Are IceCube neutrinos unveiling PeV-scale decaying dark matter?” JCAP 11, 054 (2013), arXiv:1308.1105 [hep-ph] .
  15. Marco Chianese, Damiano F. G. Fiorillo, Gennaro Miele, Stefano Morisi,  and Ofelia Pisanti, “Decaying dark matter at IceCube and its signature on High Energy gamma experiments,” JCAP 11, 046 (2019), arXiv:1907.11222 [hep-ph] .
  16. B. S. Acharya et al. (CTA Consortium), Science with the Cherenkov Telescope Array (WSP, 2018) arXiv:1709.07997 [astro-ph.IM] .
  17. Mathias Pierre, Jennifer M. Siegal-Gaskins,  and Pat Scott, “Sensitivity of CTA to dark matter signals from the Galactic Center,” JCAP 06, 024 (2014), [Erratum: JCAP 10, E01 (2014)], arXiv:1401.7330 [astro-ph.HE] .
  18. A. Acharyya et al. (CTA), “Sensitivity of the Cherenkov Telescope Array to a dark matter signal from the Galactic centre,” JCAP 01, 057 (2021), arXiv:2007.16129 [astro-ph.HE] .
  19. M. G. Aartsen et al. (IceCube-Gen2), “IceCube-Gen2: the window to the extreme Universe,” J. Phys. G 48, 060501 (2021), arXiv:2008.04323 [astro-ph.HE] .
  20. Damiano F. G. Fiorillo, Víctor B. Valera, Mauricio Bustamante,  and Walter Winter, “Searches for dark matter decay with ultrahigh-energy neutrinos endure backgrounds,” Phys. Rev. D 108, 103012 (2023), arXiv:2307.02538 [astro-ph.HE] .
  21. M. S. Longair, ed., High-energy astrophysics. Vol. 1: Particles, photons and their detection (1992).
  22. Sergio Colafrancesco, S. Profumo,  and P. Ullio, “Multi-frequency analysis of neutralino dark matter annihilations in the Coma cluster,” Astron. Astrophys. 455, 21 (2006), arXiv:astro-ph/0507575 .
  23. Sergio Colafrancesco, S. Profumo,  and P. Ullio, “Detecting dark matter WIMPs in the Draco dwarf: A multi-wavelength perspective,” Phys. Rev. D 75, 023513 (2007), arXiv:astro-ph/0607073 .
  24. Stefano Profumo and Piero Ullio, “Multi-Wavelength Searches for Particle Dark Matter,”   (2010), arXiv:1001.4086 [astro-ph.HE] .
  25. Gert Hutsi, Andi Hektor,  and Martti Raidal, “Implications of the Fermi-LAT diffuse gamma-ray measurements on annihilating or decaying Dark Matter,” JCAP 07, 008 (2010), arXiv:1004.2036 [astro-ph.HE] .
  26. Timothy Cohen, Kohta Murase, Nicholas L. Rodd, Benjamin R. Safdi,  and Yotam Soreq, “γ𝛾\gammaitalic_γ -ray Constraints on Decaying Dark Matter and Implications for IceCube,” Phys. Rev. Lett. 119, 021102 (2017), arXiv:1612.05638 [hep-ph] .
  27. Carlos Blanco and Dan Hooper, “Constraints on Decaying Dark Matter from the Isotropic Gamma-Ray Background,” JCAP 03, 019 (2019), arXiv:1811.05988 [astro-ph.HE] .
  28. Arman Esmaili and Pasquale Dario Serpico, “Gamma-ray bounds from EAS detectors and heavy decaying dark matter constraints,” JCAP 10, 014 (2015), arXiv:1505.06486 [hep-ph] .
  29. Oleg Kalashev, Mikhail Kuznetsov,  and Yana Zhezher, “Constraining superheavy decaying dark matter with directional ultra-high energy gamma-ray limits,” JCAP 11, 016 (2021), arXiv:2005.04085 [astro-ph.HE] .
  30. Marco Chianese, Damiano F. G. Fiorillo, Rasmi Hajjar, Gennaro Miele,  and Ninetta Saviano, “Constraints on heavy decaying dark matter with current gamma-ray measurements,” JCAP 11, 035 (2021a), arXiv:2108.01678 [hep-ph] .
  31. Arman Esmaili and Pasquale D. Serpico, “First implications of Tibet ASγ𝛾\gammaitalic_γ data for heavy dark matter,” Phys. Rev. D 104, L021301 (2021), arXiv:2105.01826 [hep-ph] .
  32. Marco Chianese, Damiano F. G. Fiorillo, Rasmi Hajjar, Gennaro Miele, Stefano Morisi,  and Ninetta Saviano, “Heavy decaying dark matter at future neutrino radio telescopes,” JCAP 05, 074 (2021b), arXiv:2103.03254 [hep-ph] .
  33. Barbara Skrzypek, Carlos Arguelles,  and Marco Chianese, “Decaying Dark Matter at IceCube and its Signature in High-Energy Gamma-Ray Experiments,” PoS ICRC2021, 566 (2021).
  34. M. Deliyergiyev, A. Del Popolo,  and Morgan Le Delliou, “Bounds from multimessenger astronomy on the superheavy dark matter,” Phys. Rev. D 106, 063002 (2022), arXiv:2209.14061 [astro-ph.HE] .
  35. Alessandro De Angelis, Giorgio Galanti,  and Marco Roncadelli, “Transparency of the Universe to gamma rays,” Mon. Not. Roy. Astron. Soc. 432, 3245–3249 (2013), arXiv:1302.6460 [astro-ph.HE] .
  36. GEORGE R. BLUMENTHAL and ROBERT J. GOULD, “Bremsstrahlung, synchrotron radiation, and compton scattering of high-energy electrons traversing dilute gases,” Rev. Mod. Phys. 42, 237–270 (1970).
  37. A. Mastichiadis, “Relativistic electrons in photon fields: effects of triplet pair production on inverse Compton gamma-ray spectra,” Monthly Notices of the Royal Astronomical Society 253, 235–244 (1991), https://academic.oup.com/mnras/article-pdf/253/2/235/32290415/mnras253-0235.pdf .
  38. Marco Cirelli, Gennaro Corcella, Andi Hektor, Gert Hutsi, Mario Kadastik, Paolo Panci, Martti Raidal, Filippo Sala,  and Alessandro Strumia, “PPPC 4 DM ID: A Poor Particle Physicist Cookbook for Dark Matter Indirect Detection,” JCAP 03, 051 (2011), [Erratum: JCAP 10, E01 (2012)], arXiv:1012.4515 [hep-ph] .
  39. Ronnie Jansson and Glennys R. Farrar, “A New Model of the Galactic Magnetic Field,” Astrophys. J. 757, 14 (2012a), arXiv:1204.3662 [astro-ph.GA] .
  40. Michael Unger and Glennys R. Farrar, “Uncertainties in the Magnetic Field of the Milky Way,” PoS ICRC2017, 558 (2018).
  41. X. H. Sun, W. Reich, A. Waelkens,  and T. Enslin, “Radio observational constraints on Galactic 3D-emission models,” Astron. Astrophys. 477, 573 (2008), arXiv:0711.1572 [astro-ph] .
  42. Xiaohui Sun and Wolfgang Reich, “The Galactic halo magnetic field revisited,” Res. Astron. Astrophys. 10, 1287–1297 (2010), arXiv:1010.4394 [astro-ph.GA] .
  43. T. R. Jaffe, K. M. Ferriere, A. J. Banday, A. W. Strong, E. Orlando, J. F. Macias-Perez, L. Fauvet, C. Combet,  and E. Falgarone, “Comparing Polarised Synchrotron and Thermal Dust Emission in the Galactic Plane,” Mon. Not. Roy. Astron. Soc. 431, 683 (2013), arXiv:1302.0143 [astro-ph.GA] .
  44. Tess R. Jaffe, “Practical Modeling of Large-Scale Galactic Magnetic Fields: Status and Prospects,” Galaxies 7, 52 (2019), arXiv:1904.12689 [astro-ph.GA] .
  45. Ferrière, Katia, “Magnetic fields and uhecr propagation,” EPJ Web Conf. 283, 03001 (2023).
  46. Ronnie Jansson and Glennys R. Farrar, “The Galactic Magnetic Field,” Astrophys. J. Lett. 761, L11 (2012b), arXiv:1210.7820 [astro-ph.GA] .
  47. Michael Unger and Glennys Farrar, “The Coherent Magnetic Field of the Milky Way,”   (2023), arXiv:2311.12120 [astro-ph.GA] .
  48. Planck Collaboration R. Adam et al., “Planck intermediate results. xlii. large-scale galactic magnetic fields,” Astronomy and Astrophysics 596, 1–28 (2016).
  49. Maxim Perelstein and Bibhushan Shakya, “Antiprotons from Dark Matter: Effects of a Position-Dependent Diffusion Coefficient,” Phys. Rev. D 83, 123508 (2011), arXiv:1012.3772 [astro-ph.HE] .
  50. A. W. Strong and I. V. Moskalenko, “The galprop program for cosmic ray propagation: new developments,” in 26th International Cosmic Ray Conference (1999) arXiv:astro-ph/9906228 .
  51. J Xu and J L Han, “Magnetic fields in the solar vicinity and in the Galactic halo,” Monthly Notices of the Royal Astronomical Society 486, 4275–4289 (2019), https://academic.oup.com/mnras/article-pdf/486/3/4275/28564523/stz1060.pdf .
  52. Yoshiaki Sofue, “Rotation Curve and Mass Distribution in the Galactic Center — From Black Hole to Entire Galaxy —,” Publ. Astron. Soc. Jap. 65, 118 (2013), arXiv:1307.8241 [astro-ph.GA] .
  53. Julio F. Navarro, Carlos S. Frenk,  and Simon D. M. White, “The Structure of cold dark matter halos,” Astrophys. J. 462, 563–575 (1996), arXiv:astro-ph/9508025 .
  54. Julio F. Navarro, Carlos S. Frenk,  and Simon D. M. White, “A Universal density profile from hierarchical clustering,” Astrophys. J. 490, 493–508 (1997), arXiv:astro-ph/9611107 .
  55. Sung Hak Lim, Eric Putney, Matthew R. Buckley,  and David Shih, “Mapping Dark Matter in the Milky Way using Normalizing Flows and Gaia DR3,”   (2023), arXiv:2305.13358 [astro-ph.GA] .
  56. Xiaowei Ou, Anna-Christina Eilers, Lina Necib,  and Anna Frebel, “The dark matter profile of the Milky Way inferred from its circular velocity curve,”   (2023), arXiv:2303.12838 [astro-ph.GA] .
  57. Zachary S. C. Picker and Alexander Kusenko, “Constraints on late-forming exploding black holes,” Phys. Rev. D 108, 023012 (2023), arXiv:2305.13429 [astro-ph.CO] .
  58. H. Abdalla et al. (H.E.S.S.), “Search for Dark Matter Annihilation Signals in the H.E.S.S. Inner Galaxy Survey,” Phys. Rev. Lett. 129, 111101 (2022), arXiv:2207.10471 [astro-ph.HE] .
  59. Mathieu de Naurois and Loic Rolland, “A high performance likelihood reconstruction of gamma-rays for Imaging Atmospheric Cherenkov Telescopes,” Astropart. Phys. 32, 231 (2009), arXiv:0907.2610 [astro-ph.IM] .
  60. Koji Ishiwata, Oscar Macias, Shin’ichiro Ando,  and Makoto Arimoto, “Probing heavy dark matter decays with multi-messenger astrophysical data,” JCAP 01, 003 (2020), arXiv:1907.11671 [astro-ph.HE] .
  61. Markus Deserno, “How to generate equidistributed points on the surface of a sphere,” If Polymerforshung (Ed.) 99.2 (2004).
  62. Silvia Manconi, Alessandro Cuoco,  and Julien Lesgourgues, “Dark Matter Constraints from Planck Observations of the Galactic Polarized Synchrotron Emission,” Phys. Rev. Lett. 129, 111103 (2022), arXiv:2204.04232 [astro-ph.HE] .
  63. Jatan Buch, Marco Cirelli, Gaëlle Giesen,  and Marco Taoso, “PPPC 4 DM secondary: A Poor Particle Physicist Cookbook for secondary radiation from Dark Matter,” JCAP 09, 037 (2015), arXiv:1505.01049 [hep-ph] .
  64. Takahiro Sudoh, Tim Linden,  and Dan Hooper, “The Highest Energy HAWC Sources are Likely Leptonic and Powered by Pulsars,” JCAP 08, 010 (2021), arXiv:2101.11026 [astro-ph.HE] .
Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube